Browse > Article
http://dx.doi.org/10.7316/KHNES.2013.24.4.282

Electrolytic Hydrogen Production Using Solution Processed CIGS thin Film Solar Cells  

Jeon, Hyo Sang (Clean Energy Research Center, Korea Institute of Science and Technology)
Park, Se Jin (Clean Energy Research Center, Korea Institute of Science and Technology)
Min, Byoung Koun (Clean Energy Research Center, Korea Institute of Science and Technology)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.24, no.4, 2013 , pp. 282-287 More about this Journal
Abstract
Hydrogen production from water using solar energy is attractive way to obtain clean energy resource. Among the various solar-to-hydrogen production techniques, a combination of a photovoltaic and an electrolytic cell is one of the most promising techniques in term of stability and efficiency. In this study, we show successful fabrication of precursor solution processed CIGS thin film solar cells which can generate high voltage. In addition, CIGS thin film solar cell modules producing over 2V of open circuit voltage were fabricated by connecting three single cells in series, which are applicable to water electrolysis. The operating current and voltage during water electrolysis was measured to be 4.23mA and 1.59V, respectively, and solar to hydrogen efficiency was estimated to be 3.9%.
Keywords
Water splitting; Hydrogen; $CuInGaS_2$; Solar cells; Solution process;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Khaselev, A. Bansal and J. A. Turner, " High-efficiency Integrated Multijunction Photovoltaic/electrolysis System for Hydrogen Production", Vol. 26, 2001, pp. 127-132.   DOI   ScienceOn
2 J. A. Turner, "A Realizable Renewable Energy Future", Science, Vol. 285, 1999, PP. 687-689.   DOI   ScienceOn
3 J. Nowotny, C. C. Sorrell, L. R. Sheppard and T. Bak, "Solar-hydrogen Environmentally Safe Fuel for The Future", Int. J. Hydrogen. Energy, Vol. 30, 2005, pp. 521-544.   DOI   ScienceOn
4 T. N. Veziroglu, "Dawn of the hydrogen age", Int. J. Hydrogen. Energy, Vol. 23, 1998, pp. 1007-1078.   DOI   ScienceOn
5 A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode", Nature, Vol. 238, 1972, pp. 37-38.   DOI   ScienceOn
6 P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Nebber, W. Wischmann and M. Powalla, "New World Record Efficiency for $Cu(In,Ga)Se_2$ Thin-film Solar Cells beyond 20%", Prog. Photovolt: Res. Appl, Vol. 19, 2011, pp. 894-897.   DOI   ScienceOn
7 A. J. Bard, and M. A. Fox, "Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen", Acc. Chem. Res, Vol. 28 No. 3, 1995, p. 141-145.   DOI   ScienceOn
8 O. Khaselev and J. A. Turner, "A Monolithic Photovoltaic-photoelectrochemical Device for Hydrogen Production via Water Splitting", Sciecne, Vol. 280, 1998, pp. 425-427   DOI   ScienceOn
9 T. Bak, J. Nowotny, M. Rekas and C.C. Sorrell, "Photo-electrochemical Properties of the $TiO_2$-Pt system in aqueous solutions", Int. J. Hydrogen. Energy, Vol. 28, 1995, pp.141-145.
10 C. J. Hibberd, E. Chassaing, W. Lie, D. B. Mitzi, D. Lincont and A. N. Tiwari, "Non-vacuum Methods for Formation of Cu(In,Ga)(Se,S)2 Thin Film Photovoltaic Absorbers", Prog. Photovolt: Res. Appl, Vol. 18, 2010, pp. 434-452.   DOI   ScienceOn
11 S. E. Habas, H. A. S. Platt, M. Hest and D. S. Ginley, "Low-cost Inorganic Solar Cells: From Ink to Printed Device", Chem. Rev, Vol. 110, 2010, pp. 6571-6594.   DOI   ScienceOn
12 S. J. Park, J. W. Cho, J. K. Lee, K. Shin, J-H, Kim and B. K. Min, "Solution Processed High Bandgap $CuInGaS_2$ Thin Film for Solar Cell Applications", 2013, DOI: 10.1002/pip.2354.   DOI   ScienceOn
13 Z. B. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner and H. N. J. Dinh, "Accelerating Materials Development for Photoelectrochemical Hydrogen Production: Standards for Methods, Definitions, and Reporting Protocols", Vol. 25, 2010, pp. 3-16.   DOI   ScienceOn