• Title/Summary/Keyword: $CeO_2/ZrO_2$

Search Result 199, Processing Time 0.028 seconds

Effect of Cerium loading on Stability of Ni-bimetallic/ZrO2 Mixed Oxide Catalysts for CO Methanation to Produce Natural Gas

  • Bhavani, Annabathini Geetha;Youn, Hyunki
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.269-274
    • /
    • 2018
  • All the $Ni-Co-Ce-ZrO_2$ mixed oxides are prepared by co-precipitations methods. Methanation of CO and $H_2$ reaction is screened tested over different fractions of cerium (2, 4, 7 and 12 wt.%) over $Ni-Co/ZrO_2$ bimetallic catalysts are investigated. The mixed oxides are characterized by XRD, CO-Chemisorption, TGA and screened methanation of CO and $H_2$ at $360^{\circ}C$ for 3000 min on stream at typical ratio $CO:H_2=1:1$. In $Ni-Co/CeZrO_2$ series 2 wt.% Ce loading catalyst shows most promising catalyst for $CH_4$ selectivity than $CO_2$, which directs more stability with less coke formation. The high activity is attributed to the better bimetallic synergy and the well-developed crystalline phases of NiO, $ZrO_2$ and $Ce-ZrO_2$. Other bimetallic mixed oxides NCoZ, $NCoC^{4-12}Z$ has faster deactivation with low methanation activity. Finally, 2 wt.% Ce loading catalyst was found to be optimal coke resistant catalyst.

Removal of Nitrogen Oxides Using $Cu-Mn/CeO_2-ZrO_2$ Catalyst ($Cu-Mn/CeO_2-ZrO_2$ 촉매를 이용한 질소산화물 제거 반응)

  • Jeon, Mi-Jin;Jeon, Jong-Ki;Park, Sung Hoon;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.348-351
    • /
    • 2012
  • The effect of the addition of Cu on the catalytic activity of the $Mn/CeO_2-ZrO_2$ catalyst for the low-temperature SCR reaction of NO was investigated. Three different amounts of Cu, 5, 10, and 15 wt%, were impregnated on the $Mn/CeO_2-ZrO_2$ catalyst. The characteristics of the synthesized catalysts were examined by BET, XRD, XPS, and $H_2-TPR$ analyses. The de-NOx efficiency of the Cu-added catalysts increased with the amount of Cu. When 15 wt% Cu was impregnated, the deNOx efficiency was the highest, reaching as high as 99%. The increased deNOx efficiency is attributed to the enhanced reducing power stemming from the interaction between Mn and Cu on the catalyst surface.

Autothermal Reforming of Methane using Metallic Monolith Catalyst Coated Ni/CeO2-ZrO2 (금속모노리스에 부착된 Ni/CeO2-ZrO2를 이용한 메탄의 자열개질반응)

  • Lee, Tae Jun;Cho, Kyung Tae;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.663-668
    • /
    • 2007
  • The autothermal reforming reaction of methane was investigated to produce hydrogen with $Ni/CeO_2-ZrO_2$ catalysts. Alumina-coated honeycomb monolith was applied in order to obtain high catalytic activity and stability in autothermal reforming of methane. Metallic monolithic catalyst showed better methane conversion than that of powder type at high reaction temperature. It was confirmed that $H_2O/CH_4/O_2$ ratio was important factor in autothermal reforming reaction. $H_2$ yield was increased as $H_2O/CH_4$ ratio increased. Methane conversion was improved as $O_2/CH_4$ ratio was increased, whereas, the yield of $H_2$ was decreased. The catalytic activity for $Ni/CeO_2-ZrO_2$ catalyst with 0.5 wt% Ru loading was improved at low reaction temperature.

Electrical Conductivities of [(ZrO2)$_{1-x}$(CeO2)$_x$]$_{0.92}$(Y$_2$O$_3$)$_{0.08}$ Solid Solution ([(ZrO2)$_{1-x}$(CeO2)$_x$$_{0.92}$(Y$_2$O$_3$)$_{0.08}$ 고용체의 전기전도도)

  • 이창호;최경만
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1323-1328
    • /
    • 1998
  • The electrical conductivities of the yttria (8mol%) stabilizedzirconia-ceria solid solutions were measured as a function of oxygen partial between 80$0^{\circ}C$ and 100$0^{\circ}C$ using 4-probe d.c. method Under pure oxygen atmosphere the oxygen ionic conductivity of CeO2-ZrO2 decreased with the concentration of CeO2 Under reducing condition electronic conduction due to the redox equilibrium of Ce ion was observed. Total ionic and electronic conductivities fitted by a defect model enabled to determine the electronic transference number(tei) which increased with the concentration of CeO2 and with the degree of reduction.

  • PDF

The Effect of La2O3 Loading on the Performance of Ni-La2O3-Ce0.8Zr0.2O2 Catalysts for Steam Reforming of Methane (수증기 개질 반응에서 Ni-La2O3-Ce0.8Zr0.2O2 촉매의 La2O3 함량이 촉매의 성능에 미치는 영향)

  • YOO, SEONG-YEUN;KIM, HAK-MIN;KIM, BEOM-JUN;JANG, WON-JUN;ROH, HYUN-SEOG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.419-426
    • /
    • 2018
  • $Ni-La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalysts with various $La_2O_3$ loading were investigated for hydrogen production from steam reforming of methane (SRM). The $La_2O_3$ loading influenced the physicochemical properties of $Ni-La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalysts such as BET surface area, Ni dispersion, Ni size and reducibility. Among the prepared catalysts, $Ni-70La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalyst showed the highest activity and stability at a very high gas hourly space velocity (GHSV) of $932,556h^{-1}$. This is mainly due to high Ni dispersion, small Ni size and high reducibility.

An important factor for the water gas shift reaction activity of Cu-loaded cubic Ce0.8Zr0.2O2 catalysts

  • Jang, Won-Jun;Roh, Hyun-Seog;Jeong, Dae-Woon
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.339-344
    • /
    • 2018
  • The Cu loading of a cubic $Ce_{0.8}Zr_{0.2}O_2$-supported Cu catalyst was optimized for a single-stage water gas shift (WGS) reaction. The catalyst was prepared by a co-precipitation method, and the WGS reaction was performed at a gas hourly space velocity of $150,494h^{-1}$. The results revealed that an 80 wt% $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalyst exhibits excellent catalytic performance and 100% $CO_2$ selectivity ($X_{CO}=27%$ at $240^{\circ}C$ for 100 h). The high activity of 80 wt% $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalyst is attributed to the presence of abundant surface Cu atoms and the low activation energy of the resultant process.

Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle using CeO2/ZrO2 Foam Device (CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Lee, Jin-Gyu;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.11-18
    • /
    • 2014
  • Two-step water splitting thermochemical cycle with $CeO_2$ foam device was investigated by using a solar simulator composed of 2.5 kW Xe-Arc lamp and mirror reflector. The hydrogen production of $CeO_2$ foam device depending on reaction temperature of Thermal-Reduction step and Water-Decomposition step was analyzed, and the hydrogen production of $CeO_2$ and $NiFe_2O_4/ZrO_2$ foam devices was compared. As a result, the amount of reduced $CeO_2$ considerably varies according to the reaction temperature of Thermal-Reduction step. and hydrogen production was not much when the amount of reduced $CeO_2$ decreased even if the reaction temperature of Water-Decomposition step was high. Therefore, it is very important to keep the reaction temperature of Thermal-Reduction step high in two-step thermochemical cycle with $CeO_2$.

The Synthesis of $ZrO_2+12 mol% CeO_2$ Powders by Coprecipitation Technique and Their Sintering Behaviors (공침법을 이용한 $ZrO_2+12 mol% CeO_2$ 분말합성 및 소결특성)

  • 강희복;김윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.879-885
    • /
    • 1994
  • Coprecipitation technique was used to synthesize ZrO2+12 mol% CeO2 powders with ZrOCl2.8H2O and Ce(NO3)3.6H2O as starting materials. The powders were dried on different conditions such as distilled water, ethanol, and azeotropic distillation. The powders prepared by azeotropic distillation showed weak aggregation of particles and the average particle size of powders calcined at 85$0^{\circ}C$ for 1 hour was 0.19 ${\mu}{\textrm}{m}$. The optimum sintering temperature and holding time are 130$0^{\circ}C$ and 2.5~10 hours, respectively. Beyond the optimum conditions, a phase transition from tetragonal to monoclinic causes to produce cracks in the sintered bodies and to decrease the density.

  • PDF

Fabrication and Characteristics of Y-TZP/Ce-TZP Structural Ceramics (Y-TZP/Ce-TZP 구조세라믹스의 제조 및 특성연구)

  • 이종현;이윤복;김영우;오기동;박흥채
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.10
    • /
    • pp.1177-1185
    • /
    • 1996
  • Y-TZP/Ce-TZP ceramics having relative sintered densities of>95% average grain sizes of 0.36$\mu\textrm{m}$ microhar-dness of 1150 kg/mm2 fracture strength of 390-830 MPa and toughness of 6.4-10.2 MPa$.$mm1/2 were prepared by conventional sintering of 3 mol% Y2O3-ZrO2 and 12 mol% CeO2-ZrO2 powders at 1400 and 1500$^{\circ}C$ The average grain sizes of Y-TZP/Ce-TZP ceramics were mainly governed by those of Ce-TZP. White increasing Ce-TZP content toughness increased while microhardness and fracture strength decreased. With comparing microhardness and toughness fracture strength was more sensitive on not only grain size but also other factors such as microstructural and compositional variations. The densification of Y-TZP/Ce-TZP cermaics was not greatly affected by composition and soaking time at temperature over 1400$^{\circ}C$ With increasing CE-TZP content the stability of t-ZrO2 decreased under thermal aging in air whereas increased in hydrothermal atmosphere and aqueous solution.

  • PDF

Electrical Conductivities of [(CeO2)1-x(ZrO2)x]0.8(SmO1.5)0.2 Solid Solution ([(CeO2)1-x(ZrO2)x]0.8(SmO1.5)0.2 고용체의 전기전도도)

  • 이충연;김영식;김남철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.775-782
    • /
    • 2003
  • In the study, the total conductivies in [(Ce $O_2$)$_{1-x}$ (Zr $O_2$)$_{x}$]$_{0.8}$(Sm $O_{1.5}$)$_{0.2}$ (x- 0, 0.05, 0.1, 0.2) solid solution were measured as a function of temperature and oxygen partial pressure between 80$0^{\circ}C$ and 1,00$0^{\circ}C$ using 4-probe d.c method. Under pure oxygen atmospere, the oxygen ionic conductivity of [(Ce $O_2$)$_{1-x}$ (Zr $O_2$)$_{x}$]$_{0.8}$(Sm $O_{1.5}$)$_{0.2}$ decreased with the concentration of Zr $O_2$At high oxygen partial pressure, the electrical conductivity is almost independent of oxygen partial pressure and decreased with the increase in Zr content. However, the electrical conductivity increase with decreasing oxygen partial pressure and is almost independent of Zr content at low oxygen partial pressure. Empirically, Total conductivity( $\sigma$ ) was expressed by the p$o_{2}$ -independent conductivity as $\sigma$$_{i}$, and the $p_{-1/4}$ $o_{2}$sup -dependent part as $\sigma$$_{e}$. Total, ionic and electronic conductivities fitted by data enabled to determine the transference number. The ionic transference number( $t_{i}$ ) decreased while the electronic transference( $t_{e}$ ) increase with the increase in Zr content and p$o_{2}$.