• Title/Summary/Keyword: $CeO_2/ZrO_2$

Search Result 199, Processing Time 0.026 seconds

A Comparison of Structural Characterization of Composite Alumina Powder Prepared by Sol-Gel Method According to the Promoters (졸-겔법으로 제조된 복합 알루미나 미분체의 첨가제에 의한 구조적 특성 비교)

  • Lee, Jung-Woon;Yoon, Ho-Sung;Chae, U-Suk;Park, Han-Jin;Hwang, Un-Yeon;Park, Hyung-Sang;Park, Dal-Ryung;Yoo, Seung-Joon
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.503-510
    • /
    • 2005
  • In this research, composite alumina was prepared to add the various promoters by sol-gel method and examined its thermal stability. After sintering at $1,200^{\circ}C$, the thermal stability resulted in following order, $Si{\fallingdotseq}La$ > Ti > $Ba{\fallingdotseq}Ce$ > Y > $Zr{\fallingdotseq}Mg$, in accordance with adding the promoters. Especially in case of silica-added alumina, a phase transformation temperature to ${\alpha}$-alumina increased about $150^{\circ}C$ and after sintering at $1,200^{\circ}C$, it showed to maintain in ${\gamma}$-form and ${\delta}$-form alumina phase. Also it showed an increase of surface area from $3m^2/g$ to $71m^2/g$ compared with pure ${\alpha}$-alumina. In the case of silicaadded alumina, the characterization change of this alumina particle resulted in a delay of phase transformation because Si-O-Al bond was increased when sintered at high temperature. In case of lanthanum-added alumina, there was a sintering delay phenomenon in inter-particles as $LaAlO_3$ structure existed. The existence of lanthanum structure was confirmed by XRD and XPS analysis. It appeared on the alumina surface as $La_2O_3$ structure when it was sintered under $1,000^{\circ}C$, as the perovskite structure of $LaAlO_3$ at above $1,000^{\circ}C$ and as the magneto-plumbite structure of $LaAl_{11}O_{18}$ at above $1,300^{\circ}C$.

A Simulation Study on the Synthesis of Syngas from the Reforming Reaction of Biogas (바이오가스 개질 반응으로부터 합성가스 제조를 위한 반응 모사 연구)

  • HAN, DANBEE;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • The amount of biogas increases as the amount of organic waste increases. Recently, biogas from organic waste have been made much efforts to utilize as a energy. In particular, the concentration of $CH_4$ and $CO_2$ generated from sewage sludge and livestock manure treatment are 60-70% and 30-35%, and $CH_4$ and $CO_2$ generated from food wastes are 60-80% and 20-40%. In case of landfill gas, $CH_4$ and $CO_2$ have a concentration of 40-60% and 40-60% respectively. Therefore, in order to use the biogas more widely, it is necessary to convert the biogas to methanol, LNG or DME. In this study, experiments were conducted to produce hydrogen and carbon monoxide through various biogas reforming reactions on $Ni/Ce-ZrO_2/Al2O3$ catalysts. The experiment of synthetic gas synthesis was carried out on a wide concentrations of methane and carbon dioxide, which were the major constituents of biogas from various organic wastes. The effect of $(O_2+CO_2)/CH_4$ (=R') on the yields of hydrogen and carbon monoxide, the conversion rate of methane and carbon dioxide was investigated. Also simulation for syngas synthesis on the $CO_2$ reforming of $CH_4$ was computed by employing total Gibbs free energy minimization method using PRO/II simulator, and compared with the experimental results on wet and dry reforming reaction of biogas.

Synthesis of (Ba0.5Sr0.5)0.99Co0.2Fe0.8O3-δ (BSCF) and the Electrochemical Performance of the BSCF/GDC(Buffer)/ScSZ ((Ba0.5Sr0.5)0.99Co0.2Fe0.8O3-δ(BSCF)의 합성 및 BSCF/GDC(Buffer)/ScSZ의 전기화학적 특성)

  • Lim, Yong-Ho;Hwang, Hae-Jin;Moon, Ji-Woong;Park, Sun-Min;Choi, Byung-Hyun;Lee, Mi-Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.6 s.289
    • /
    • pp.369-375
    • /
    • 2006
  • [ $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{x}Fe_{1-x}O_{3-{\delta}}$ ] [x=0.8, 0.2](BSCF) powders were synthesized by a Glycine-Nitrate Process (GNP) and the electrochemical performance of the BSCF cathode on a scandia stabilized zirconia, $[(Sc_{2}O_3)_{0.11}(ZrO_2)_{0.89}]-1Al_{2}O_3$ was investigated. In order to prevent unfavorable solid-state reactions between the cathode and zirconia electrolyte, a GDC ($Gd_{0.1}Ce_{0.9}O_{2-{delta}}$) buffer layer was applied on ScSZ. The BSCF (x = 0.8) cathode formed on GDC(Buffer)/ScSZ(Disk) showed poor electrochemical property, because the BSCF cathode layer peeled off after the heat-treatment. On the other hand, there were no delamination or peel off between the BSCF and GDC buffer layer, and the BSCF (x = 0.2) cathode exhibited fairly good electrochemical performances. It was considered that the observed phenomenon was associated with the thermal expansion mismatch between the cathode and buffer layer. The ohmic resistance of the double layer cathode was slightly lower than that of the single layer BSCF cathode due to the incorporation of platinum particle into the BSCF second layer.

Electrochemical Evaluation of Mixed Ionic and Electronic Conductor-Proton Conducting Oxide Composite Cathode for Protonic Ceramic Fuel Cells (혼합 이온 및 전자 전도체-프로톤 전도성 전해질 복합 공기극을 적용한 프로토닉 세라믹 연료전지의 전기화학적 성능 평가)

  • HYEONGSIK SHIN;JINWOO LEE;SIHYUK CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.48-55
    • /
    • 2024
  • The electrochemically active site of mixed ionic and electronic conductor (MIEC) as a cathode material is restricted to the triple phase boundary in protonic ceramic fuel cells (PCFCs) due to the insufficient of proton-conducting properties of MIEC. This study primarily focused on expanding the electrochemically active site by La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF6428)-BaZr0.4Ce0.4Y0.1Yb0.1O3-δ (BZCYYb4411) composite cathode. The electrochemical properties of the composite cathode were evaluated using anode-supported PCFC single cells. In comparison to the LSCF6428 cathode, the peak power density of the LSCF6428-BZCYYb4411 composite cathode is much enhanced by the reduction in both ohmic and non-ohmic resistance, possibly due to the increased electrochemically active site.

Mineralogy and Chemical Composition of the Residual Soils (Hwangto) from South Korea (우리 나라 황토(풍화토)의 구성광물 및 화학성분)

  • 황진연;장명익;김준식;조원모;안병석;강수원
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.147-163
    • /
    • 2000
  • The mineralogy and chemical composition of reddish to brownish yellow residual soils, so called "Hwangto" have been examined according to representative host rocks. The result of the study indicates that Hwangto consists of 40-80% clay minerals and various minerals such as quartz, feldspar, hornblende, goethite, and gibbsite. Clay minerals include kaolinite, halloysite, illite, hydroxy interlayered vermiculite (HIV), mica/vermiculite interstratifield mineral and chlorite. The mineralogical constituents and contents of Hwangto were different depending on the types of host rocks. Moreover, the Jurassic granitic rocks contain relatively more kaolin minerals, whereas the Cretaceous granitic rocks contain more HIV and illite. In addition, reddish Hwangto contains relatively more kaolinite and HIV, and yellowish Hwangto contains more illite and halloysite. It is suggested that feldspars and micas of host rocks were chemically weathered into illite, halloysite, illite/vermiculite interstratified minerals, and HIV, and finally into kaolinite. Compared with their host rocks, the major chemical compositions of Hwangto tend to contain more $Al_2O_3,\;Fe_2O_3,\;H_2O$ in amount and less Ca, Mg, and Na. Hwangto contains relatively high amount of trace elements, P, S, Zr, Sr, Ba, Rb, and Ce including considerable amount of Li, V, Cr, Zn, Co, Ni, Cu, Y, Nb, La, Nd, Pb, Th in excess of 10 ppm. Relatively high amount of most trace elements were detected in the Hwangto. The major and minor chemical compositions of the Hwangto were different depending on the types of host rocks. However, their difference was in the similar range compared with the compositions of host rocks.

  • PDF

Reprocessing of fluorination ash surrogate in the CARBOFLUOREX process

  • Boyarintsev, Alexander V.;Stepanov, Sergei I.;Chekmarev, Alexander M.;Tsivadze, Aslan Yu.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.109-114
    • /
    • 2020
  • This work presents the results of laboratory scale tests of the CARBOFLUOREX (CARBOnate FLUORide EXtraction) process - a novel technology for the recovery of U and Pu from the solid fluorides residue (fluorination ash) of Fluoride Volatility Method (FVM) reprocessing of spent nuclear fuel (SNF). To study the oxidative leaching of U from the fluorination ash (FA) by Na2CO3 or Na2CO3-H2O2 solutions followed by solvent extraction by methyltrioctylammonium carbonate in toluene and purification of U from the fission products (FPs) impurities we used a surrogate of FA consisting of UF4 or UO2F2, and FPs fluorides with stable isotopes of Ce, Zr, Sr, Ba, Cs, Fe, Cr, Ni, La, Nd, Pr, Sm. Purification factors of U from impurities at the solvent extraction refining stage reached the values of 104-105, and up to 106 upon the completion of the processing cycle. Obtained results showed a high efficiency of the CARBOFLUOREX process for recovery and separating of U from FPs contained in FA, which allows completing of the FVM cycle with recovery of U and Pu from hardly processed FA.

Optimization and Packed Bed Column Studies on Esterification of Glycerol to Synthesize Fuel Additives - Acetins

  • Britto, Pradima J;Kulkarni, Rajeswari M;Narula, Archna;Poonacha, Sunaina;Honnatagi, Rakshita;Shivanathan, Sneha;Wahab, Waasif
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.70-79
    • /
    • 2022
  • Biodiesel production has attracted attention as a sustainable source of fuel and is a competitive alternate to diesel engines. The glycerol that is produced as a by-product is generally discarded as waste and can be converted to green chemicals such as acetins to increase bio-diesel profitability. Acetins find application in fuel, food, pharmaceutical and leather industries. Batch experiments and analysis have been previously conducted for synthesis of acetins using glycerol esterification reaction aided by sulfated metal oxide catalysts (SO42-/CeO2-ZrO2). The aim of this study was to optimize process parameters: effects of mole ratio of reactants (glycerol and acetic acid), catalyst concentration and reaction temperature to maximize glycerol conversion/acetin selectivity. The optimum conditions for this reaction were determined using response surface methodology (RSM) designed as per a five-level-three-factor central composite design (CCD). Statistica software 10 was used to analyze the experimental data obtained. The optimized conditions obtained were molar ratio - 1:12, catalyst concentration - 6 wt.% and temperature -90 ℃. A packed bed reactor was fabricated and column studies were performed using the optimized conditions. The breakthrough curve was analyzed.

Effect of Additives on the Densification and Electrical Properties of Ce0.8Gd0.2O2-δ Ceramics (Ceria의 소결과 전기전도도에 미치는 첨가제의 영향)

  • Yoo, Kyung-Bin;Oh, Eun-Ju;Choi, Gyeong-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.816-820
    • /
    • 2005
  • The doped-ceria is a strong candidate material for an intermediate temperature SOFC. However, the mechanical strength and the magnitude of electrical conductivity need to be increased at low sintering temperature. In this study, to improve both properties, $1at\% $ of Mg, Ca, Cr, Fe, Co, Ni, Cu, Ga, and Zr were added to the GDC20 ($20at\%$ Gd-doped Ceria) and sintered at $1350^{\circ}C$ that is $250^{\circ}C$ lower than $1600^{\circ}C$. With addition, the relative density of the sintered sample increased. Fe, Co, Ni, Cu, Ga doped-GDC20 showed high relative density over $92\%$. Among them, Ga doped-GDC20 showed the most improved sinterability. The conductivity of doped­GDC20 increased by $\~10$ times at $300\~700^{\circ}C$.

Overview of the Effect of Catalyst Formulation and Exhaust Gas Compositions on Soot Oxidation In DPF

  • Choi Byung Chul;FOSTER D.E.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • This work reviews the effects of catalyst formulation and exhaust gas composition on soot oxidation in CDPF (Catalytic Diesel Particulate Filter). DOC's (Diesel Oxidation Catalysts) have been loaded with Pt catalyst (Pt/$Al_{2}O_3$) for reduction of HC and CO. Recent CDPF's are coated with the Pt catalyst as well as additives like Mo, V, Ce, Co, Fe, La, Au, or Zr for the promotion of soot oxidation. Alkali (K, Na, Cs, Li) doping of metal catalyst tends to increase the activity of the catalysts in soot combustion. Effects of coexistence components are very important in the catalytic reaction of the soot. The soot oxidation rate of a few catalysts are improved by water vapor and NOx in the ambient. There are only a few reports available on the mechanism of the PM (particulate matter) oxidation on the catalysts. The mechanism of PM oxidation in the catalytic systems that meet new emission regulations of diesel engines has yet to be investigated. Future research will focus on catalysts that can not only oxidize PM at low temperature, but also reduce NOx, continuously self-cleaning diesel particulate filters, and selective catalysts for NOx reduction.