• 제목/요약/키워드: $CaCO_3$ precipitation

Search Result 138, Processing Time 0.027 seconds

Evaluation of Soil Improvement by Carbonate Precipitation with Urease (요소분해효소에 의한 탄산칼슘 침전을 통한 지반 개량 평가)

  • Song, Jun Young;Sim, Youngjong;Jin, Kyu-Nam;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.9
    • /
    • pp.61-69
    • /
    • 2017
  • This study presents the experimental results of $CaCO_3$ formation in sand by the Enzyme Induced Carbonate Precipitation (EICP) method. Concentration of $CaCO_3$ with elapsed reaction time is calibrated by standardized procedure by measuring $CO_2$ pressure, and it increases with time towards asymptotic value. Jumunjin sand saturated with EICP solution shows that both shear wave velocity and electrical conductivity sharply increase as the reaction starts to approach to the constant values after 50 hours of reaction time. Urease concentration of 0.5 g/L exhibits 224% higher final shear wave velocity than that of 0.1 g/L. The nucleation models hint that carbonate tends to precipitate not only at grain contacts but also at grain surfaces. Regardless of urease concentration, electrical conductivity and shear wave velocity follow the unique path. The scanning electron microscopic images and X-ray computed tomographic images validate the spatial configuration of produced $CaCO_3$ in soils.

The Examination of Mortar Durability by Microbial Biomineralization (미생물의 생체광물형성작용에 따른 모르타르 내구성 검토)

  • Kim, Sung-Tae;Chun, Woo-Young;Kim, Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.525-526
    • /
    • 2009
  • On this paper we induce calcite($CaCO_3$) precipitation using microbial biomineralization of the Sporosarcina pasteurii and evaluate required performance evaluation by adjusting it to mortar. As a result carbonation normal mortar test piece(C3S-W) and mortar test piece(C3S-S.p) mixed with Sporosarcina pasteurii, reaction of C3S-S.p was late than C3S-W. Also, in the case of carbonation experiment of C3S-S.p curing in the Urea-CaCl2 aqueous solution(Medium) during 28days and durability of the C3S-W, durability of the mortar test piece(C3S-S.p) mixed with Sporosarcina pasteurii become higher than normal mortar test piece(C3S-W).

  • PDF

Recovery of Lactic Acid from Fermentation Broth Using Precipitation and Reactive Distillation (발효액으로부터 침전과 반응증류를 이용한 젖산의 회수)

  • Park, Suk-Chan;Lee, Sang-Mok;Kim, Young-Jun;Kim, Woo-Sik;Koo, Yoon-Mo
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.199-203
    • /
    • 2006
  • Precipitation and reactive distillation were employed to recover lactic acid from fermentation broth. Lime was initially added to fermentation broth in order to convert soluble lactic acid to an insoluble calcium lactate form. Drowning-out crystallization was used to decrease the solubility of calcium lactate by adding ethanol as a co-precipitant. In the ideal solution of organic acids as well as fermentation broth, precipitation experiments were performed with varying amounts of ethanol. Precipitation process was followed by reactive distillation. Carboxylate salts formed in the previous precipitation process were mixed with carbon dioxide and triethylamine to precipitate as calcium carbonate. The remaining liquid was distilled for 1 hr at different temperatures. Triethylamine and water were recovered from the top of the distiller, while organic acids, inducing lactic acid as a main component remained in feeding bottle. The yield of recovered lactic acid was 67.5% with the purity of 99.7%.

Effect of reaction temperature and time on the formation of calcite precipitation of recycled concrete aggregate (RCA) for drainage applications

  • Boo Hyun Nam;Jinwoo An;Toni Curate
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.65-75
    • /
    • 2023
  • Recycled concrete aggregate (RCA) is widely used as a construction material in road construction, concrete structures, embankments, etc. However, it has been reported that calcite (CaCO3) precipitation from RCA can be a cause of clogging when used in drainage applications. An accelerated calcite precipitation (ACP) procedure has been devised to evaluate the long-term geochemical performance of RCA in subsurface drainage systems. While the ACP procedure was useful for the French Drain application, there remained opportunities for improvement. In this study, key factors that control the formation of calcite precipitation were quantitatively evaluated, and the results were used to improve the current prototype ACP method. A laboratory parametric study was carried out by investigating the effects of reaction temperature and time on the formation of calcite precipitation of RCA, with determining an optimum reaction temperature and time which maximizes calcite precipitation. The improved ACP procedure was then applied to RCA samples that were graded for Type I Underdrain application, to compare the calcite precipitation. Two key findings are (1) that calcite precipitation can be maximized with the optimum heating temperature (75℃) and time (17 hours), and (2) the potential for calcite precipitation from RCA is not as significant as for limestone. With the improved ACP procedure, the total amount of calcite precipitation from RCAs within the life cycle of a drain system can be determined when RCAs from different sources are used as pipe backfill materials in a drain system.

Assessment of Bio-corrosive Effect and Determination of Controlling Targets among Microflora for Application of Multi-functional CFB on Cement Structure (다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정)

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.237-242
    • /
    • 2015
  • The use of calcite-forming bacteria (CFB) in crack remediation and durability improvements in construction materials creates a permanent and environmentally-friendly material. Therefore, research into this type of application is stimulating interdisciplinary studies between microbiology and architectural engineering. However, the mechanisms giving rise to these materials are dependent on calcite precipitation by the metabolism of the CFB, which raises concerns about possible hazards to cement-based construction due to microbial metabolic acid production. The aim of this study was to determine target microorganisms that possibly can have bio-corrosive effects on cement mortar and to assess multi-functional CFBs for their safe application to cement structures. The chalky test was first used to evaluate the $CaCO_3$ solubilization feature of construction sites by fungi, yeast, bacterial strains. Not all bacterial strains are able to solubilize $CaCO_3$, but C. sphaerospermum KNUC253 or P. prolifica KNUC263 showed $CaCO_3$ solubilization activity. Therefore, these two strains were identified as target microorganisms that require control in cement structures. The registered patented strains Bacillus aryabhatti KNUC205, Arthrobacter nicotianae KNUC2100, B. thuringiensis KNUC2103 and Stenotrophomonas maltophilia KNUC2106, reported as multifunctional CFB (fungal growth inhibition, crack remediation, and water permeability reduction of cement surfaces) and isolated from Dokdo or construction site were unable to solubilize $CaCO_3$. Notably, B. aryabhatti KNUC205 and A. nicotianae KNUC2100 could not hydrolyze cellulose or protein, which can be the major constituent macromolecules of internal materials for buildings. These results show that several reported multi-functional CFB can be applied to cement structures or diverse building environments without corrosive or bio-deteriorative risks.

Phosphorus removal by lime-natural mineral dissolved solutions

  • Joohyun, Kim;Sunho, Yoon;Jueun, Jung;Sungjun, Bae
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • In previous studies, solely ferric (Fe3+) and calcium (Ca2+) ions were commonly used for removal of PO4-P (considered as T-P in this study) in wastewater via chemical precipitation. Herein, the removal of total phosphorus (T-P) in wastewater was performed using various mineral and lime dissolved solutions. The dissolution kinetics of different minerals (feldspar, olivine, elvan, illite, sericite, and zeolite) and lime was compared and used their solutions for T-P removal of real wastewater. The highest T-P removal (almost 90%) was obtained by the lime dissolved solution and followed by zeolite, illite, feldspar, and others. We observed a significant co-relationship (R of 0.96) between the amount of initial Ca2+ and T-P removal. This was induced by formation of hydroxyapatite-like mineral via Ca-P precipitation reaction at high pH solution. Furthermore, additional removal of suspended solid (SS) and chemical oxygen demand (COD) was achieved by only lime dissolved solution. Finally, the lime-feldspar dissolved solutions were prepared at different ratios (10-50%), which showed a successive T-P removal up to two times by samples of 40 and 50%.

Ionic composition and pollution characteristics of precipitation in Jeju Island during 2009-2014 (2009-2014년 제주지역 강수의 이온조성 및 오염특성)

  • Bu, Jun Oh;Song, Jung Min;Shin, Su Hyun;Kim, Won Hyung;Kang, Chang Hee
    • Analytical Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.19-28
    • /
    • 2016
  • The objective of this study was to determine the acidification of precipitation in the Jeju area. Precipitation samples were collected from the Jeju area from 2009-2014, and the major ionic species were analyzed. In the regression analysis, through a comparison of ion balance, electric conductivity, and acid fraction, the correlation coefficients showed a good linear relationship within the range of 0.927~0.983. The volume-weighted means of the pH and electric conductivity were 4.9 and 22.7 µS/cm, respectively. The ionic strength of precipitation was 0.27±0.38 mM, indicating about 35.9 % of total precipitation within the pure precipitation criteria. The volume-weighted mean concentrations (ìeq/L) of the ionic species in the precipitation were in the order of Na+ > Cl > nss-SO42− > NO3 > NH4+ > Mg2+ > H+ > nss-Ca2+ > PO43− > K+ > HCOO > CH3COO > NO2 > F > HCO3 > CH3SO3 . The acidification contributions by sulfuric and nitric acids were 54.5 % and 36.5 %, respectively. Meanwhile the acidification contributions by formic and acetic acids were 4.8 % and 4.2 %, respectively. Thus, it was found that the acidification of the precipitation in the Jeju area was mainly due to the inorganic acids. The neutralization factors by NH3 and CaCO3 were also 33 % and 20 %, respectively.

Formation of Environment Friendly Electrodeposition Films by CO2 Gas Dissolved in Seawater and Their Corrosion Resistance (해수 중 CO2 기체의 유입에 의한 환경 친화적인 전착 코팅막의 형성과 그 내식특성)

  • Lee, Sung-Joon;Kim, Hye-Min;Lee, Seul-Gee;Moon, Kyung-Man;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • The peculiar feature of cathodic protection in seawater has the capability to form mineral calcareous deposits such as magnesium and calcium on metal surfaces. It is assumed that $OH^-$ ions are generated close to the metal surface as a result of cathodic protection and generated $OH^-$ ions increases the pH of the metal/seawater interface outlined as the following formulae. (1) $O_2+2H_2O+4e{\rightarrow}4OH^-$, or (2) $2H_2O+2e{\rightarrow}H_2+2OH^-$. And high pH causes precipitation of $Mg(OH)_2$ and $CaCO_3$ in accordance with the following formulae. (1) $Mg^{2+}+2OH^-{\rightarrow}Mg(OH)_2$, (2) $Ca^{2+}+CO{_3}^{2-}{\rightarrow}CaCO_3$. The focus of this study was to increase the amount of $CO{_3}^{2-}$ with the injection of $CO_2$ gas to the solution for accelerating process of the following formulae. (1) $H_2O+CO_2{\rightarrow}H_2CO_3$, (2) $HCO^{3-}{\rightarrow}{H^+}+CO{_3}^{2-}$. Electrodeposit films were formed by an electro-deposition technique on steel substrates in solutions of both natural seawater and natural seawater dissolved $CO_2$ gas with different current densities, over different time periods. The contents of films were investigated by scanning electron microscopy(SEM) and X-ray diffraction(XRD). The adhesion and corrosion resistance of the coating films were evaluated by anodic polarization. From an experimental result, only $CaCO_3$ were found in solution where injected $CO_2$ gas regardless of current density. In case of injecting the $CO_2$ gas, weight gain of electrodeposits films hugely increased and it had appropriate physical properties.

Experimental study on Microbially Induced Calcite Precipitation for expansive soil stabilization

  • Zheng Lu;Yu Qiu;Jie Liu;Chengcheng Yu; Hailin Yao
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.85-96
    • /
    • 2023
  • Microbially induced carbonate precipitation (MICP) is extensively discussed as a promising topic for ground stabilization. The practical effect of stabilizing the expansive soil is presented in this paper with a logical process from the bacterial activity to the treatment technology. Temperature, pH, shaking frequency, and inoculation amount are discussed to evaluate the bacterial activity. The physic-mechanic properties are also evaluated to discuss the effect of the MICP process on expansive soil. Results indicate that the MICP method achieves the mitigation of expansion. The treated soil has a low proportion of fine particles (< 5 ㎛), the plasticity index significantly decreases, and strength values improve much. MICP process has a significant cementation effect on the soil matrix. Moreover, the infiltration model test presents the coating effect on the topsoil. According to the relation between the CaCO3 content and the treatment effect, the topsoil has better treatment than the deeper soil.

A Study on Lithium Leaching from the Fly Ash of Taean Electric Power Plant (태안화력발전소 비산재로부터 리튬용출연구)

  • Kim, Kang-Joo;Lee, Eun-Gyu;Lee, Jae-Cheol;Hwang, Soo-Yeon;Kim, Chang-Hyeon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.117-122
    • /
    • 2012
  • The leaching of Li from fly ashes was studied. The fly ash produced from the Taean electric power plant of the Korea Western Power Co., Ltd. was used for this study. The Li leaching was observed according to the changes in solid:solution ratio, solution types (seawater or deionized water), and the $CO_2$ condition in the atmosphere. The results showed that the Li concentrations in the solution increased continuously as the solid:solution ratio increased. The Li leaching per unit mass of fly ash was greater when the deionized water was used for the experiment and when the $CO_2$ dissolution is limited during the reaction because the precipitation of $CaCO_3$ is suppressed under those conditions. At high solid:solution ratio, $Mg^{2+}$, the ion preventing the Li extraction from seawater by adsorption, was effectively removed from the seawater.