• Title/Summary/Keyword: $CaCO_3$ powder

Search Result 125, Processing Time 0.027 seconds

Effect of Limestone Powder on Hydration of $C_{3}A-CaSO_{4}$ $\cdot$ $2H_{2}O$ system ($C_3A-CaSO_4\cdot2H_2O$ 계의 수화반응에 미치는 석회석미분말의 영향)

  • Lee Jong-Kyu;Chu Yong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.349-352
    • /
    • 2005
  • In this work, effects of limestone powder on hydration of $C_3A-CaSO_4\cdot2H_2O$ system was discussed based on the XRD Quantitative analysis, and the possibility of Delayed Ettringite Formation was also discussed. The early hydration of $C_{3}A$ was delayed by addition of $CaCO_{3}$ powder. The delay effect was enhanced by increasing of $CaCO_{3}$ content and finer powder of $CaCO_{3}$ addition. After consumption of $CaSO_4\cdot2H_2O$, the reaction of $CaCO_{3}$ is started. Delayed Ettringite Formation would take place because monosulfoaluminate is not stable in presence of $CaCO_{3}$. In order to prevent the delayed ettringite formation in $C_3A-CaSO_4\cdot2H_2O-CaCo_3$ system, the reduction of monosulfoaluminate formation is important. Therefore, by increasing the amount of $CaCO_{3}$ addition and finer $CaCO_{3}$ powder addition, the delayed ettringite formation can be prevented.

  • PDF

Effect of Limestone Powder on Hydration of C3A-CaSO4·2H2O System (C3A-CaSO4·2H2O 계의 수화반응에 미치는 석회석 미분말의 영향)

  • Lee, Jong-Kyu;Chu, Yong-Sik;Song, Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.584-588
    • /
    • 2011
  • In this work, effects of limestone powder on hydration of $C_3A-CaSO_4{\cdot}2H_2O$ system was discussed based on the XRD Quantitative analysis, and the possibility of Delayed Ettringite Formation was also discussed. The early hydration of $C_3A$ was delayed by addition of $CaCO_3$ powder. The delay effect was enhanced by increasing of $CaCO_3$ content and finer powder of $CaCO_3$ addition. After consumption of $CaSO_4{\cdot}2H_2O$, the reaction of $CaCO_3$ is started. Delayed Ettringite Formation would take place because monosulfoaluminate is not stable in presence of $CaCO_3$. In order to prevent the delayed ettringite formation in $C_3A-CaSO_4{\cdot}2H_2O-CaCO_3$ system, the reduction of monosulfoaluminate formation is important. Therefore, by increasing the amount of $CaCO_3$ addition and finer $CaCO_3$ powder addition, the delayed ettringite formation can be prevented.

Effect of Adding Al-Ca Fluoride on Sintering Behavior of Aluminum-Bronze Powder

  • Masuoka, Sachiko;Arami, Yoshiro;Nagai, Shozo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.276-277
    • /
    • 2006
  • In order to accelerate the sintering of Al-Bronze powder covered with passive oxide film, we focused on the way to add Al-Ca fluoride consisting of $AlF_3$ and $CaF_2$, examined the effect of the $CaF_2$ mixing rate in Al-Ca fluoride, the amount of the added Al-Ca fluoride and the sintering temperature on sintering properties of Al-Bronze powder and considered the mechanism of the sintering acceleration. Al-Bronze powder was sintered most effectively by adding Al-Ca fluoride with the $CaF_2$ mixing rate of 20mass%. If the amount of added fluoride was over 0.05mass% and the sintering temperature was over 1123K, the sintering acceleration of the Al-Bronze powder appears. Regarding the mechanism of the sintering acceleration, it was presumed that $Al_2O_3$ film on the surface of the Al-Bronze particles was removed in the process of the formation of gaseous AlOF by the reaction with $AlF_3$, and the reaction was accelerated further by the presence of the liquid phase which is formed in Al-Ca fluoride.

  • PDF

Fundamental Characteristics of CO2-cured Mortar with Varied Rates of Blast Furnace Slag Fine Powder Substitution (고로슬래그 미분말 치환율에 따른 이산화탄소 양생 모르타르의 기초 물성)

  • Ryu, Ji-Su;Jang, Kyung-Su;Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.11-21
    • /
    • 2024
  • This research elucidates the fundamental properties of carbon dioxide (CO2)-cured mortar as influenced by varying substitution rates of blast furnace slag fine powder. The findings indicate that CO2 curing enhances the formation of calcium carbonate (CaCO3), contributing to pore reduction and the early development of strength. While calcium hydroxide (Ca(OH)2) plays a more pivotal role in the primary development of strength compared to CaCO3, an increase in the substitution rate of blast furnace slag fine powder results in reduced production of Ca(OH)2. Nonetheless, the maintenance of strength through CaCO3 formation is observed even after the depletion of Ca(OH)2, suggesting that the required performance can be sustained post-exposure to the atmosphere following CO2 curing. It is noted that substitution rates exceeding 50% lead to performance deterioration due to CO2, highlighting the necessity for careful adjustment of the substitution ratio.

A Study on the Calcium Bioavailability of Eggshell Powder in the Growing Rats (난각 칼슘의 생체 이용성에 관한 연구)

  • 장순옥
    • Journal of Nutrition and Health
    • /
    • v.36 no.7
    • /
    • pp.684-690
    • /
    • 2003
  • This study has investigated the bioavailability of calcium in eggshell powder (ESP) for the purpose of reutilizing eggshells as the calcium source. The experiment was designed 2 ${\times}$ 2 factorial method with two sources, CaCO$_3$ and ESP, and two levels, 0.2% and 0.4% calcium. Weanling SD rats were assigned randomly to one of 4 groups and provided by one of the isocaloric, 20% casein based 4 different experimental diets for 4weeks. Deionized water was given and environment was kept from any contamination of minerals. The body weight, diet intake, feed efficiency ratio (FER), bone growth, Ca contents of bones, and apparent absorption were measured. FER (0.38 - 0.40) and kidney weight were not different among groups and the weight and length, Ca content, strength of two bones Tibia and Femur were not affected by Ca sources except Femur Ca content. Ca content of Femur was greater in ESP groups than that of CaCO$_3$ groups. The body weight gain, bone growth, the Ca contents and strength of bones were significantly greater in 0.4% calcium groups suggesting 0.2% calcium is not sufficient for the optimum growth in the growing rats. These results indicate that ESP be a proper Ca source comparable or superior to CaCO$_3$. However the apparent absorption rate of final 3 days of feeding did not support the observed results showing lower rate in ESP than CaCO$_3$ groups. Further study be needed in the absorption aspect.

Strength and Durability Properties of Polymer Concrete Utilizing Oyster Shell Powder as a Filler (굴 패각 분말을 충전재로 활용한 폴리머 콘크리트의 강도 및 내구 특성)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.125-134
    • /
    • 2010
  • This study was performed to evaluate the workability, strengths and durability of polymer concrete using oyster shell that are reclaimed at public shore illegally or leaved on the surroundings of shore to prevent the environmental pollution. We investigated the effect of oyster shell powder (OSP) and $CaCO_3$. on the slump, compressive strength, flexural strength, acid sulfuric and freezing and thawing resistance as a filler of polymer concrete. Modified OSP obtained by crushing oyster shell (less than 0.15 mm size) consists of 60.47 wt% of $SiO_2$ and 39.5 wt% of $CaCO_3$. As a result of slump test by OSP and $CaCO_3$. contents, it is found that slump of specimen used OSP is lower than that used $CaCO_3$. and the more OSP contents are, its slump is increased. Compressive and flexural strength of polymer concrete using OSP are similar or slightly lower than that using $CaCO_3$. In acid sulfuric test for 5 % $H_2SO_4$ and freezing thawing test, regardless of kinds of fillers and contents are not found fatal defects in weight change, falling-off in surface and durability factor.

CaO Optimal Classification Conditions for the Use of Waste Concrete Fine Powder as a Substitute for Limestone in Clinker Raw Materials (폐콘크리트 미분말을 클링커 원료의 석회석 대체재로 사용하기 위한 CaO 최적 분급 조건)

  • Ha-Seog Kim;Sang-Chul Shin
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.147-156
    • /
    • 2024
  • This study aims to reduce CO2 generated during the manufacturing process by using limestone (CaCO3), a carbonate mineral used in the production of cement clinker, as a decarbonated raw material that does not contain CO2. Among various industrial by-products, we attempted to use cement paste attached to waste concrete. In general, limestone for cement must have a CaCO3 content of at least 80% (CaO, 44% or more) to ensure the quality of cement clinker. However, the CaO content of waste concrete fine powder is about 20% on average, so in order to use it as a cement clinker raw material, the CaO content must be increased to more than 35%. Therefore, by using the difference in hardness of the mineral composition of waste concrete fine powder to selectively crush CaO type minerals with relatively low hardness, classify and sieve, the CaO content can be increased by more than 35%. Accordingly, in this study, we experimentally and statistically reviewed and analyzed the optimal conditions for efficiently separating CaO and SiO2 and other components by selectively pulverizing minerals containing relatively low CaO through a grinding process. As a result of the optimal grinding conditions experiment, it was found that the optimal conditions were a grinding time of less than 5 minutes, a type of material to be crushed of 30 mm, and an amount of material to be crushed of 1.0 or more. However, it is judged that it is necessary to review pulverized materials of mixed particle sizes rather than pulverized products of single particle size.

Hydration Properties of $\alpha$-Tricalcium Phosphate in Tris. Solution ($\alpha$-Tricalcium Phosphate의 Tris. Solution에서의 수화특성)

  • 인경필;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.905-910
    • /
    • 1993
  • $\alpha$-tricalcium phosphate($\alpha$-TCP) powders were synthesized and their hydration properties were investigated in Tris. solution. Two kinds of $\alpha$-TCP powder samples were prepared; the one is reaction product of CaHPO4.2H2O and CaCO3, and another is that of hydroxyapatite(HAp) and $\beta$-Ca2P2O7. They were satisfied with Ca/P mole ratio 1.5 and were heated at 150$0^{\circ}C$ for 5 hours. In the hydration of $\alpha$-TCP samples the powder which was synthesized from HAp and $\beta$-Ca2P2O7 was hydrated faster than that from CaHPO4.2H2O and CaCO3. The hydration reaction of $\alpha$-TCP powder transformed rapidly into HAp accompanying setting and hardening. It was realized that the hydration reaction of $\alpha$-TCP was due to the solution-precipitation mechanism and the hydrates from the reaction were Ca-deficient HAp having funtional group HPO42-.

  • PDF

Synthesis of C3S, C2S, C3A Powders using Ultra-fine Calcium Oxide Powder Synthesized from Eggshell and Effect of C3A Content on Hardened Mixed Aggregates (난각으로부터 합성된 초미립 CaO 분말을 이용한 C3S, C2S, C3A 분말 합성 및 혼합 경화체에 미치는 C3A 함량의 영향)

  • Kong, Heon;Kwon, Ki-Beom;Park, Sang-Jin;Noh, Whyo-Sub;Lee, Sang-Jin
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.493-501
    • /
    • 2019
  • In this work, ultra-fine calcium oxide (CaO) powder derived from eggshells is used as the starting material to synthesize mineral trioxide aggregate (MTA). The prepared CaO powder is confirmed to have an average particle size of 500 nm. MTAs are synthesized with three types of fine CaO-based powders, namely, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A). The synthesis behavior of C3S, C2S and C3A with ultra-fine CaO powder and the effects of C3A content and curing time on the properties of MTA are investigated. The characteristics of the synthesized MTA powders are examined by X-ray diffraction (XRD), field emission-scanning electron microscope (FE-SEM), and a universal testing machine (UTM). The microstructure and compressive strength characteristics of the synthesized MTA powders are strongly dependent on the C3A wt.% and curing time. Furthermore, MTA with 5 wt.% C3A is found to increase the compressive strength and shorten the curing time.

Improvement of Machinability of PM Steels by Addition of $CaCO_3$ Based Compound

  • Ishii, Yoshinari;Kawase, Kinya
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.578-579
    • /
    • 2006
  • We investigated that the effect of $CaCO_3$ based compound on machinability of two types of PM steels. One is a copper steel which is selected as a general PM steel, and the other is a diffusion alloyed steel selected as a high strength PM steel. It is found that $CaCO_3$ based compound addition improves machinability in drilling of both of the PM steels. Although the compound addition degrades the mechanical properties of PM steels, it is considered that decrease of the properties can be compensated by increasing density.

  • PDF