• Title/Summary/Keyword: $Ca^{2+}$current

Search Result 635, Processing Time 0.031 seconds

The Effect of External Divalent Cations on Intestinal Pacemaking Activity

  • Kim, Byung-Joo;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.203-207
    • /
    • 2005
  • Electrical rhythmicity in the gastrointestinal (GI) muscles is generated by pacemaker cells, known as interstitial cells of Cajal (ICC). In the present study, we investigated the effect of external divalent cations on pacemaking activity in cultured ICC from murine small intestine by using whole-cell patch clamp techniques. ICC generated pacemaker currents under a voltage clamp or electrical pacemaker potentials under a current clamp, and showed a mean amplitude of $-500{\pm}50$ pA or $30{\pm}1$ mV and the frequency of $18{\pm}2$ cycles/min. Treatments of the cells with external 0 mM $Ca^{2+}$ stopped pacemaking activity of ICC. In the presence of 2 mM $Ca^{2+}$, 0 mM external $Mg^{2+}$ depolarized the resting membrane potential, and there was no change in the frequency of pacemaking activity. However, 10 mM external $Mg^{2+}$ decreased the frequency of pacemaking activity ($6.75{\pm}1$ cycles/min, n=5). We replaced external 2 mM $Ca^{2+}$ with equimolar $Ba^{2+}$, $Mn^{2+}$ and $Sr^{2+}$, and they all developed inward current in the sequence of $Ba^{2+}$>$Mn^{2+}$>$Sr^{2+}$. Also the frequency of the pacemaking activity was stopped or irregulated. We investigated the effect of 10 mM $Ba^{2+}$, $Mn^{2+}$ and $Sr^{2+}$ on pacemaking activity of ICC in the presence of external 0 mM $Mg^{2+}$, and found that 10 mM $Ba^{2+}$ and $Mn^{2+}$ induced large inward current and stopped the pacemaking activity of ICC (n=5). Interestingly, 10 mM $Sr^{2+}$ induced small inward current and potentiated the amplitude of pacemaking activity of ICC (n=5). These results indicate that extracellular $Ca^{2+}$ and $Mg^{2+}$ are requisite for the pacemaking activity of ICC.

Inhibition of L-type Ca2+ current by ginsenoside Rd in rat ventricular myocytes

  • Lu, Cheng;Sun, Zhijun;Wang, Line
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.169-177
    • /
    • 2015
  • Background: Ginsenoside Rd (GSRd), one of the most abundant ingredients of Panax ginseng, protects the heart via multiple mechanisms including the inhibition of $Ca^{2+}$ influx.We intended to explore the effects of GSRd on L-type $Ca^{2+}$ current ($I_{Ca,L}$) and define the mechanism of the suppression of $I_{Ca,L}$ by GSRd. Methods: Perforated-patch recording and whole-cell voltage clamp techniques were applied in isolated rat ventricular myocytes. Results: (1) GSRd reduced $I_{Ca,L}$ peak amplitude in a concentration-dependent manner [half-maximal inhibitory concentration $(IC_{50})=32.4{\pm}7.1{\mu}mol/L$] and up-shifted the current-voltage (I-V) curve. (2) GSRd ($30{\mu}mol/L$) significantly changed the steady-state activation curve of $I_{Ca,L}$ ($V_{0.5}:-19.12{\pm}0.68$ vs. $-6.26{\pm}0.38mV$; n = 5, p < 0.05) and slowed down the recovery of $I_{Ca,L}$ from inactivation [the time content (${\zeta}$) from 91 ms to 136 ms, n = 5, p < 0.01]. (3) A more significant inhibitive effect of GSRd ($100{\mu}mol/L$) was identified in perforated-patch recording when compared with whole-cell recording [$65.7{\pm}3.2%$ (n = 10) vs. $31.4{\pm}5.2%$ (n = 5), p < 0.01]. (4) Pertussis toxin ($G_i$ protein inhibitor) completely abolished the $I_{Ca,L}$ inhibition induced by GSRd. There was a significant difference in inhibition potency between the two cyclic adenosine monophosphate elevating agents (isoprenaline and forskolin) prestimulation [$55{\pm}7.8%$ (n = 5) vs. $17.2{\pm}3.5%$ (n = 5), p < 0.01]. (5) 1H-[1,2,4]Oxadiazolo[4,3-a]-quinoxalin-1-one (a guanylate cyclase inhibitor) and N-acetyl-$\small{L}$-cysteine (a nitric oxide scavenger) partly recovered the $I_{Ca,L}$ inhibition induced by GSRd. (6) Phorbol-12-myristate-13-acetate (a protein kinase C activator) and GF109203X (a protein kinase C inhibitor) did not contribute to the inhibition of GSRd. Conclusion: These findings suggest that GSRd could inhibit $I_{Ca,L}$ through pertussis toxin-sensitive G protein ($G_i$) and a nitric oxide-cyclic guanosine monophosphate-dependent mechanism.

A Study on the Ouabain-induced Transient Inward Current(TI) in the Rabbit Sinoatrial Node (동방결절에서 Ouabain에 의하여 발생하는 일과성 내향전류(TI)에 관한 연구)

  • Choi, Jung-Yun;Hong, Chang-Yee;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.19 no.2
    • /
    • pp.101-111
    • /
    • 1985
  • Transient inward current (TI) was studied by the two micro-electrode voltage clamp technique in the sinoatrial node of the rabbit. The author confirmed that in $10^{-6}$ M ouabain TI was found in the SA node and investigated the effects of ions, $(Na^+,\;K^+,\;Ca^{2+})$, $\beta-agonist$ (isoprenaline), local anesthetics (quinidine, lidocaine) and Ca-blockers ($Co^{2+}$, verapamil, diltiazem) on the TI recorded during depolarizing voltage clamp pulses to -40 and -20 mV. The results obtained were as follows ; 1) $10^{-6}M$ ouabain increased the frequency of sinus action potential and decreased the amplitude, especially overshoot of action potential. TI was induced by the depolarizing voltage clamp Pulses and the magnitude of the slow inward current (isi) decreased and the time course was slowed by the same depolarizing pulses. 2) 30% $Na^{+}$ and 24mM $K^+$ decreased by $10^{-6}M$ ouabain and 6 mM $Ca^{2+}$ and $10^{-7}M$ isoprenaline increased TI, $i_{si}$ and current oscillations. 3) Quinidine $(5\times10^{-7}M)$ reduced TI and $i_{si}$ but lidocaine $(10^6\;-10^5M)$ didn't reduced or increase TI. Current oscillations increased and isi decreased by lidocaine. 4) Ca-blockers decreased the amplitude and the frequency of sinus action potential. TI and $i_{si}$ decreased significantly but were not abolished completely at the concentrations used in this experiment. Verapamil and diltiazem had inhibitory action on TI in $2\times10^{-7}M$ concentration and showed very slow recovery after wasting out with normal Tyrode solution.

  • PDF

Contradictory Effects of Superoxide and Hydrogen Peroxide on $K_{Ca}3.1$ in Human Endothelial Cells

  • Choi, Shinkyu;Na, Hye-Young;Kim, Ji Aee;Cho, Sung-Eun;Suh, Suk Hyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.3
    • /
    • pp.181-187
    • /
    • 2013
  • Reactive oxygen species (ROS) are generated in various cells, including vascular smooth muscle and endothelial cells, and regulate ion channel functions. $K_{Ca}3.1$ plays an important role in endothelial functions. However, the effects of superoxide and hydrogen peroxide radicals on the expression of this ion channel in the endothelium remain unclear. In this study, we examined the effects of ROS donors on $K_{Ca}3.1$ expression and the $K^+$ current in primary cultured human umbilical vein endothelial cells (HUVECs). The hydrogen peroxide donor, tert-butyl hydroperoxide (TBHP), upregulated $K_{Ca}3.1$ expression, while the superoxide donors, xanthine/xanthine oxidase mixture (X/XO) and lysophosphatidylcholine (LPC), downregulated its expression, in a concentration-dependent manner. These ROS donor effects were prevented by antioxidants or superoxide dismustase. Phosphorylated extracellular signal-regulated kinase (pERK) was upregulated by TBHP and downregulated by X/XO. In addition, repressor element-1-silencing transcription factor (REST) was downregulated by TBHP, and upregulated by X/XO. Furthermore, $K_{Ca}3.1$ current, which was activated by clamping cells with 1 ${\mu}M$ $Ca^{2+}$ and applying the $K_{Ca}3.1$ activator 1-ethyl-2-benzimidazolinone, was further augmented by TBHP, and inhibited by X/XO. These effects were prevented by antioxidants. The results suggest that hydrogen peroxide increases $K_{Ca}3.1$ expression by upregulating pERK and downregulating REST, and augments the $K^+$ current. On the other hand, superoxide reduces $K_{Ca}3.1$ expression by downregulating pERK and upregulating REST, and inhibits the $K^+$ current. ROS thereby play a key role in both physiological and pathological processes in endothelial cells by regulating $K_{Ca}3.1$ and endothelial function.

Voltage-Dependent Inactivation of Calcium Currents in the Mouse Eggs

  • Park, Young-Geun;Yang, Young-Seon;Yum, Myung-Kul;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.125-131
    • /
    • 1991
  • Inactivation properties of Ca current in the unfertilized eggs of mouse were studied by using the whole cell voltage clamp technique and single microelectrode voltage clamp technique. Membrane potential was held at -80 mV and step depolarization was applied from -50 mV to 50 mV for $200{\sim}500\;ms$. Peak of inward Ca currents was $-2{\sim}-4\;nA$ at a membrane Potentials from -20 mV to 0 mV and outward currents were not observed within the membrane voltage range studied $(-50{\sim}50\;mV)$. Inward currents were fully inactivated within 200 ms after the onset of step depolarization. As the membrane became depolarized, time constant of inactivation (${\tau}$) was decreased but remained around $20{\sim}30\;ms$ beyond 10 mV. When $Ca^{2+}$ was used as a charge earlier, inactivation of inward $Ca^{2+}$ current also occured and time course of inactivation was similar to that of $Ca^{2+}$ currents as charge carrier. In the bathing solution containing high potassium $(131\;mM\;K^+)$, process of inactivation was not changed except a parallel decrease of value for the entire range of membrane potential. Steady-state inactivation of the $current(h_{\infty})$ obtained from the double pulse experiment showed the voltage-dependent change. These results suggested that inactivation of Ca currents in the unfertilized eggs of mouse was voltage-dependent.

  • PDF

Relaxant Effect of Spermidine on Acethylcholine and High $K^+$-induced Gastric Contractions of Guinea-Pig

  • Kim, Young-Chul;Sim, Jae-Hoon;Choi, Woong;Kim, Chan-Hyung;You, Ra-Young;Xu, Wen-Xie;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.2
    • /
    • pp.59-64
    • /
    • 2008
  • In our previous study, we found that spermine and putrescine inhibited spontaneous and acetylcholine (ACh)-induced contractions of guinea-pig stomach via inhibition of L-type voltage- dependent calcium current ($VDCC_L$). In this study, we also studied the effect of spermidine on mechanical contractions and calcium channel current ($I_{Ba}$), and then compared its effects to those by spermine and putrescine. Spermidine inhibited spontaneous contraction of the gastric smooth muscle in a concentration-dependent manner ($IC_{50}=1.1{\pm}0.11mM$). Relationship between inhibition of contraction and calcium current by spermidine was studied using 50 mM high $K^+$-induced contraction: Spermidine (5 mM) significantly reduced high $K^+$ (50 mM)-induced contraction to 37${\pm}$4.7% of the control (p<0.05), and inhibitory effect of spermidine on $I_{Ba}$ was also observed at a wide range of test potential in current/voltage (I/V) relationship. Pre- and post-application of spermidine (5 mM) also significantly inhibited carbachol (CCh) and ACh-induced initial and phasic contractions. Finally, caffeine (10 mM)-induced contraction which is activated by $Ca^{2+}$-induced $Ca^{2+}$ release (CICR), was also inhibited by pretreatment of spermidine (5 mM). These findings suggest that spermidine inhibits spontaneous and CCh-induced contraction via inhibition of $VDCC_L$ and $Ca^{2+}$ releasing mechanism in guinea-pig stomach.

Voltage-dependent $Ca^{2+}$ Current Identified in Freshly Isolated Interstitial Cells of Cajal (ICC) of Guinea-pig Stomach

  • Kim, Young-Chul;Suzuki, Hikaru;Xu, Wen-Xie;Hashitani, Hikaru;Choi, Woong;Yun, Hyo-Yung;Park, Seon-Mee;Youn, Sei-Jin;Lee, Sang-Jeon;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.323-330
    • /
    • 2008
  • The properties of voltage dependent $Ca^{2+}$ current (VDCC) were investigated in interstitial cells of Cajal (ICC) distributed in the myenteric layer (ICC-MY) of guinea-pig antrum. In tissue, ICC-MY showed c-Kit positive reactions and produced driving potentials with the amplitude and frequency of about 62 mV and 2 times $min^{-1}$ respectively, in the presence of $1{\mu}M$ nifedipine. Single ICC-MY isolated by enzyme treatment also showed c-Kit immunohistochemical reactivity. These cells were also identified by generation of spontaneous inward current under $K^+$ -rich pipette solution. The voltage clamp experiments revealed the amplitude of - 329 pA inward current at irregular frequency. With $Cs^+$-rich pipette solution at $V_h=-80\;mV$, ICC-MY produced voltage-dependent inward currents (VDIC), and nifedipine ($1{\mu}M$) blocked VDIC. Therefore, we successfully isolated c-Kit positive single ICC from guinea-pig stomach, and found that ICC-MY potently produced dihydropiridine sensitive L-type voltage-dependent $Ca^{2+}$ currents ($VDCC_L$).

Measurement of Joint Resistance of $(Bi,Pb)_2Sr_2Ca_2Cu_3O_x$/Ag Superconducting Tape by Field decay Technique (자장감쇠법을 이용한 $(Bi,Pb)_2Sr_2Ca_2Cu_3O_x$/Ag 초전도선재의 접합저항 측정)

  • Kim, Jung-Ho;Lee, Seung-Muk;Joo, Jin-Ho
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • We fabricated a closed coils by using resistive-joint method and the joint resistance of the coils were estimated by field decay technique in liquid nitrogen. We used the Runge-kutta method for the numerical analysis to calculate the decay properties. The closed coil was wound by $(Bi,Pb)_2Sr_2Ca_2Cu_3O_x$/Ag tape. Both ends the tape were overlapped and soldered to each other. The current was induced in a closed coils by external magnetic flux density. Its decay characteristic was observed by means of measuring the magnetic flux density generated by induced current at the center of the closed coil with hall sensor. The joint resistance was calculated as the ratio of the inductance of the loop to the time constants. The joint resistances were evaluated as a function of critical current of loop, contact length, sweep time, and external magnetic flux density in a contact length of 7 cm. It was observed that joint resistance was dependent on contact length of a closed coil, but independent of critical current, sweep time, and external magnetic flux density. The joint resistance was measured to be higher for a standard four-probe method, compared with that for the field decay technique. This implies that noise of measurement in a standard four-probe method is larger than that of field decay technique. It was estimated that joint resistance was $8.0{\times}10^{-9}{\Omega}$ to $11.4{\times}10^{-9}{\Omega}$ for coils of contact length for 7 cm. It was found that 40Pb/60Sn solder are unsuitable for persistent mode.

Regulation of Atrial $Ca^{2+}$ Signaling by Inositol 1,4,5-Trisphosphate Receptor and Mitochondria (이노시톨 삼인산 수용체와 미토콘드리아에 의한 심방 근세포 $Ca^{2+}$ 신호전달의 조절)

  • Lee , Hyang-Jin;Cleemann , Lars;Morad , Martin;Woo, Sun-Hee
    • YAKHAK HOEJI
    • /
    • v.48 no.6
    • /
    • pp.352-357
    • /
    • 2004
  • Atrial myocytes have two functionally separate groups of ryanodine receptors (RyRs): those at the periphery colocalized with L-type $Ca^{2+}$channels (DHPRS) and those a t the cell interior not associated with DHPRs. $Ca^{2+}$ current ($I_{ca}$) directly gates peripheral RyRs on action potential and the subsequent peripheral $Ca^{2+}$ release propagates into the center of atrial myocytes. The mechanisms that regulate the $Ca^{2+}$+ propagation wave remain Poorly understood. Using 2-D confocal$Ca^{2+}$ imaging, we examined the role of inositol 1,4,5-trisphosphate receptor (IP $_3R$) and mitochondria on ($I_{ca}$)- gated local $Ca^{2+}$ signaling in rat atrial myocytes. Blockade of IP $_3R$ by xestospongin C (XeC) partially suppressed the magnitudes of I ca-gated central and peripheral $Ca^{2+}$ releases with no effect on $I_{ca}$. Mitochondrial staining revealed that mitochondria were aligned with ${\thickapprox}2-{\mu}m$ separations in the entire cytoplasm of ventricular and atrial myocytes. Membrane depolarization induced rapid mitochondrial $Ca^{2+}$ rise and decay in the cell periphery with slower rise in the center, suggesting that mitochondria may immediately uptake cytosolic $Ca^{2+}$, released from the peripheral SR on depolarization, and re-release the $Ca^{2+}$ into the cytosol to activate neighboring central RyRs. Our data suggest that the activation of IP $_3R$ and mitochondrial $Ca^{2+}$ handing on action potential may serve as a cofactor for the $Ca^{2+}$ propagation from the DHPR-coupled RyRs to the DHPR-uncoupled RyRs with large gaps between them.

Acetylcholine Induces Hyperpolarization Mediated by Activation of $K_{(ca)}$ Channels in Cultured Chick Myoblasts

  • Lee, Do-Yun;Han, Jae-Hee;Park, Jae-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.37-43
    • /
    • 2005
  • Our previous report demonstrated that chick myoblasts are equipped with $Ca^{2+}$-permeable stretchactivated channels and $Ca^{2+}-activated$ potassium channels ($K_{Ca}$), and that hyperpolarization-induced by $K_{Ca}$ channels provides driving force for $Ca^{2+}$ influx through the stretch-activated channels into the cells. Here, we showed that acetylcholine (ACh) also hyperpolarized the membrane of cultured chick myoblasts, suggesting that nicotinic acetylcholine receptor (nAChR) may be another pathway for $Ca^{2+}$ influx. Under cell-attatched patch configuration, ACh increased the open probability of $K_{Ca}$ channels from 0.007 to 0.055 only when extracellular $Ca^{2+}$ was present. Nicotine, a nAChR agonist, increased the open probability of $K_{Ca}$ channels from 0.008 to 0.023, whereas muscarine failed to do so. Since the activity of $K_{Ca}$ channel is sensitive to intracellular $Ca^{2+}$ level, nAChR seems to be capable of inducing $Ca^{2+}$ influx. Using the $Ca^{2+}$ imaging analysis, we were able to provide direct evidence that ACh induced $Ca^{2+}$ influx from extracellular solution, which was dramatically increased by valinomycin-mediated hyperpolarization. In addition, ACh hyperpolarized the membrane potential from $-12.5{\pm}3$ to $-31.2{\pm}5$ mV by generating the outward current through $K_{Ca}$ channels. These results suggest that activation of nAChR increases $Ca^{2+}$ influx, which activates $K_{Ca}$ channels, thereby hyperpolarizing the membrane potential in chick myoblasts.