• 제목/요약/키워드: $Ca^{2+}$ transient

검색결과 212건 처리시간 0.024초

Fucoidan Extract from Laminaria religiosa Suppresses Ischemia-induced Apoptosis and Cell Proliferation in the Hippocampus of Gerbils

  • Lee, Jong-Jin;Song, Yun-Kyung;Lim, Hyung-Ho
    • 대한한의학회지
    • /
    • 제27권4호
    • /
    • pp.105-115
    • /
    • 2006
  • Fucoidan has been shown to exhibit a host of biological activities, including anti-coagulant, anti-thrombotic, anti-tumourigenic, anti-inflammatory, anti-viral, anti-complementary and neuroprotective effects. In the present study, we attempted to determine the effects of Fucoidan on both apoptosis and cell proliferation in the hippocampal CA1 region and the dentate gyrus of gerbils after the induction of transient global ischemia. This experiment involved the use of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay as well as immunohistochemisty for caspase-3 and 5-bromo-2'-deoxyuridine (BrdU). The monosaccharide composition of the purified Fucoidan which had been extracted from Laminaria religiosa was utilized in this study. The present study clearly induces that apoptotic cell death and cell proliferation in the gerbil's hippocampal regions increased significantly following the induction of transient global ischemia and the results of this study also indicate that Fucoidan exerted a suppressive effect on this observed ischemia-induced increase in apoptosis within the CA1 and dentate gyrus, and also suppressed cell proliferation in the dentate gyrus.

  • PDF

Increase of Peroxynitrite Production in the Rat Brain Following Transient Forebrain Ischemia

  • Kim, Hee-Joon;Kim, Seong-Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권3호
    • /
    • pp.205-212
    • /
    • 2001
  • It has been proposed that nitirc oxide is involved in the pathogenesis of cerebral ischemia-reperfusion. Because superoxide production is also enhanced during reperfusion, the cytotoxic oxidant peroxynitrite could be formed, but it is not known if this occurs following global forebrain ischemia-reperfusion. We examined whether peroxynitrite generation is increased in the vulnerable regions after forebrain ischemia-reperfusion. Transient forebrain ischemia was produced in the conscious rat by four-vessel occlusion. Rats were subjected to 10 or 15 min of forebrain ischemia. Immunohistochemical method was used to detect 3-nitrotyrosine, a marker of peroxynitrite production. 3-Nitrotyrosine immunoreactivity was enhanced in the hippocampal CA1 area 3 days after reperfusion. Furthermore, in rats subjected to ischemia for 15 min, this change was also observed in the lateral striatal region and the lateral septal nucleus $2{\sim}3$ days after reperfusion. The cresyl violet staining of adjacent sections showed that neuronal cell death was induced in parallel with the nitrotyrosine immunoreactivity in the hippocampal CA1 area and the lateral striatal region. Our findings suggest that oxygen free radical accumulation and consequent peroxynitrite production play a role in neuronal death caused by cerebral ischemia-reperfusion.

  • PDF

Ca와 Nb가 첨가된 $BaTiO_3$의 결함화학 (Defect Chemistry of Ca and Nb doped $BaTiO_3$)

  • 정재호;한영호;박순자
    • 한국재료학회지
    • /
    • 제4권7호
    • /
    • pp.798-807
    • /
    • 1994
  • $BaTio_{3}$에 Ca가 첨가되면 상온 저항을 증가시키며 이는 $Ca^{2+}$$Ti^{4+}$를 치환하여 acceptor 불순물을 형성하기 때문이라고 생각된다. 그러나 $Ca^{2+}$$Ti^{4+}$보다 이온 반경이 크므로 그 자리를 치환하지 않는다는 주장도 있다. 본 실험에서는 $BaTiO_{3}$에 의한 acceptor가 존재하는지 알아보기 위하여 Ba/(Ti+Ca+Nb)=1이 되도록 Ca와 Nb를 첨가하여 산소 분압의 변화에 따른 고온 평형 전기 전도도를 측정하였다. 측정은 $1000^{\circ}C$에서 행하였으며 산소 분압은 $10^{-15}$ ~ 1 기압의 범위에서 조절하였다. 첨가된 Ca와 Nb의 농도를 변화시킨 결과, acceptor와 donor의 상호 보상 효과가 나타났다. 즉, Nb에 의한 donor를 보상하는 acceptor가 존재함을 확일하였고, 전도도 곡선의 결함 화학적인 해석에 의하여 Ca가 Ti자리를 치환함을 알았다. 이러한 acceptor의 존재는 ICTS에 의해서도 확인되었다.

  • PDF

골격근의 수축과 가소성에 대한 신호전달-매개 단백질 및 관련 효소의 상관성 (Relationship of the Signal Transduction-mediated Proteins and Enzymes to Contractility and Plasticity in Skeletal Muscles)

  • 김중환
    • The Journal of Korean Physical Therapy
    • /
    • 제19권4호
    • /
    • pp.1-14
    • /
    • 2007
  • Background: It is generally accepted that skeletal muscle contraction is triggered by nerve impulse and intracellular $Ca^{2+}\;([Ca^{2+}]_i)$ released from intracellular $Ca^{2+}$ stores such as sarcoplasmic reticulum (SR). Specifically, this process, called excitation-contraction (E-C) coupling, takes place at intracellular junctions between the plasma membrane, the transverse (T) tubule L-type $Ca^{2+}$ channel (dihydropyridine-sensitive L-rype $Ca^{2+}$ channel, DHPR, also called tetrads), and the SR $Ca^{2+}$ release channel (ryanodine-sensitive $Ca^{2+}$ release channel, RyR, also called feet) of internal $Ca^{2+}$ stores in skeletal muscle cells. Furthermore, it has been reported that the $Ca^{2+-}$ dependent and -independent contraction determine the expression of skeletal muscle genes, thus providing a mechanism for tightly coupling the extent of muscle contraction to regulation of muscle plasticity-related excitation-transcription (E-T) coupling. Purpose: Expression and activity of plasticity-associated enzymes in gastrocnemius muscle strips have not been well studied, however. Methods: Therefore, in this study the expression and phosphorylation of E-C and E-T coupling-related mediators such as protein kinases, ROS(reactive oxygen species)- and apoptosis-related substances, and others in gastrocnemius muscles from rats was examined. Results: I found that expression and activity of MAPKs (mitogen-activated protein kinases, ERK1/2, p38MAPK, and SAPK/JNK), apoptotic proteins (cleaved caspase-3, cytochrome c, Ref-1, Bad), small GTP-binding proteins (RhoA and Cdc42), actin-binding protein (cofilin), PKC (protein kinase C) and $Ca^{2+}$ channel (transient receptor potential channel 6, TRPC6) was observed in rat gastrocnemius muscle strips. Conclusion: These results suggest that MAPKs, ROS- and apoptosis-related enzymes, cytoskeleton-regulated proteins, and $Ca^{2+}$ channel may in part functionally import in E-C and E-T coupling from rat skeletal muscles.

  • PDF

Regulation of the expression and function of TRPCs and Orai1 by Homer2 in mouse pancreatic acinar cells

  • Kang, Jung Yun;Kang, Namju;Yang, Yu-Mi
    • International Journal of Oral Biology
    • /
    • 제46권3호
    • /
    • pp.134-139
    • /
    • 2021
  • Under physiological conditions, calcium (Ca2+) regulates essential functions of polarized secretory cells by the stimulation of specific Ca2+ signaling mechanisms, such as increases in intracellular Ca2+ concentration ([Ca2+]i) via the store-operated Ca2+ entry (SOCE) and the receptor-operated Ca2+ entry (ROCE). Homer proteins are scaffold proteins that interact with G protein-coupled receptors, inositol 1,4,5-triphosphate (IP3) receptors, Orai1-stromal interaction molecule 1, and transient receptor potential canonical (TRPC) channels. However, their role in the Ca2+ signaling in exocrine cells remains unknown. In this study, we investigated the role of Homer2 in the Ca2+ signaling and regulatory channels to mediate SOCE and ROCE in pancreatic acinar cells. Deletion of Homer2 (Homer2-/-) markedly increased the expression of TRPC3, TRPC6, and Orai1 in pancreatic acinar cells, whereas these expressions showed no difference in whole brains of wild-type and Homer2-/- mice. Furthermore, the response of Ca2+ entry by carbachol also showed significant changes to the patterns regulated by specific blockers of SOCE and ROCE in pancreatic acinar cells of Homer2-/- mice. Thus, these results suggest that Homer2 plays a critical role in the regulatory action of the [Ca2+]i via SOCE and ROCE in mouse pancreatic acinar cells.

Role of $K^+$ Channels to Resting Membrane Potential of Rabbit Middle Cerebral Arterial Smooth Muscle Cells

  • Kim, Na-Ri;Han, Jin;Kim, Eui-Yong;Kim, Yun-Hee;Sim, Jae-Hong;Kim, Soo-Cheon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권6호
    • /
    • pp.547-554
    • /
    • 1999
  • The aim of the present study is to investigate the contribution of $Ca^{2+} ?activated\;K^+\;(K_{Ca})$ channels and delayed rectifier $K^+\;(K_V)$ channels to the resting membrane potential (RMP) in rabbit middle cerebral arterial smooth muscle cells. The RMP and membrane currents were recorded using the whole-cell patch configuration and single $K_{Ca}$ channel was recorded using the outside-out patch configuration. Using the pipette solution containing 0.05 mM EGTA, the RMP was $-25.76{\pm}5.08$ mV (n=12) and showed spontaneous transient hyperpolarizations (STHPs). The membrane currents showed time- and voltage-dependent outward currents with spontaneous transient outward currents (STOCs). When we recorded the membrane potential using the pipette solution containing 10 mM EGTA, the RMP was depolarized and did not show STHPs. The membrane currents showed no STOCs but only showed slowly inactivating outward currents. External TEA (1 mM) reversibly inhibited the STHPs, depolarized the RMP, reduced the membrane currents, abolished STOCs, and decreased the open probability of single $K_{Ca}$ channel. When $K_V$ currents were isolated, the application of 4-AP (5 mM) depolarized the RMP. The important aspect of our results is that $K_{Ca}$ channel is responsible for the generation of the STHPs in the membrane potential and plays an important role in the regulation of the RMP and $K_V$ channel is also responsible for the regulation of the RMP in rabbit middle cerebral arterial smooth muscle cells.

  • PDF

Post-ischemic Time-dependent Activity Changes of Hippocampal CA1 cells of the Mongolian Gerbils

  • Won, Moo-Ho;Shin, Hyung-Cheul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권6호
    • /
    • pp.247-251
    • /
    • 2007
  • Changes of single unit activity of CA1 hippocampus region were investigated in anesthetized Mongolian gerbils for six days following transient ischemia. Ischemia was produced immediately before the implantation of micro-wire recording electrodes. In control animals receiving pseudo-ischemic surgery, neither spontaneous neuronal activities ($5.70{\pm}0.4Hz$) nor the number of recorded neurons per animal changed significantly for six days. Correlative firings among simultaneously recorded neurons were weak (correlation coefficient > 0.6) in the control animals. Animals subjected to ischemia exhibited a significant elevation of neural firing at post-ischemic 12 hr ($9.95{\pm}0.9Hz$) and day 1 ($8.48{\pm}0.8Hz$), but a significant depression of activity at post-ischemic day 6 ($1.84{\pm}0.3Hz$) when compared to the activities of non-ischemic control animal. Ischemia significantly (correlation coefficient > 0.6) increased correlative firings among simultaneously recorded neurons, which were prominent especially during post-ischemic days 1, 2 and 6. Although the numbers of spontaneously active neurons recorded from control group varied within normal range during the experimental period, those from ischemic group changed in post-ischemic time-dependent manner. Temporal changes of the number of cells recorded per animal between control group and ischemic group were also significantly different (p = 0.0084, t = 3.271, df = 10). Cresyl violet staining indicated significant loss of CA1 cells at post-ischemic day 7. Overall, we showed post-ischemic time-dependent, differential changes of three characteristics, including spontaneous activity, network relationship and excitability of CA1 cells, suggesting sustained neural functions. Thus, histological observation of CA1 cell death till post-ischemic day 7 may not represent actual neuronal death.

Characterization of intracellular Ca2+ mobilization in gefitinib-resistant oral squamous carcinoma cells HSC-3 and -4

  • Kim, Mi Seong;Kim, Min Seuk
    • International Journal of Oral Biology
    • /
    • 제46권4호
    • /
    • pp.176-183
    • /
    • 2021
  • Oral squamous cell carcinoma (OSCC) metastasis is characterized by distant metastasis and local recurrence. Combined chemotherapy with cisplatin and 5-fluorouracil is routinely used to treat patients with OSCC, and the combined use of gefitinib with cytotoxic drugs has been reported to enhance the sensitivity of cancer cells in vitro. However, the development of drug resistance because of prolonged chemotherapy is inevitable, leading to a poor prognosis. Therefore, understanding alterations in signaling pathways and gene expression is crucial for overcoming the development of drug resistance. However, the altered characterization of Ca2+ signaling in drug-resistant OSCC cells remains unclear. In this study, we investigated alterations in intracellular Ca2+ ([Ca2+]i) mobilization upon the development of gefitinib resistance in human tongue squamous carcinoma cell line (HSC)-3 and HSC-4 using ratiometric analysis. This study demonstrated the presence of altered epidermal growth factor- and purinergic agonist-mediated [Ca2+]i mobilization in gefitinib-resistant OSCC cells. Moreover, Ca2+ content in the endoplasmic reticulum, store-operated calcium entry, and lysosomal Ca2+ release through the transient receptor potential mucolipin 1, were confirmed to be significantly reduced upon the development of apoptosis resistance. Consistent with [Ca2+]i mobilization, we identified modified expression levels of Ca2+ signaling-related genes in gefitinib-resistant cells. Taken together, we propose that the regulation of [Ca2+]i mobilization and related gene expression can be a new strategy to overcome drug resistance in patients with cancer.

Homer2 regulates amylase secretion via physiological calcium oscillations in mouse parotid gland acinar cells

  • Kang, Namju;Kang, Jung Yun;Shin, Dong Min;Yang, Yu-Mi
    • International Journal of Oral Biology
    • /
    • 제45권2호
    • /
    • pp.58-63
    • /
    • 2020
  • The salivary glands secrete saliva, which plays a role in the maintenance of a healthy oral environment. Under physiological conditions, saliva secretion within the acinar cells of the gland is regulated by stimulation of specific calcium (Ca2+) signaling mechanisms such as increases in the intracellular Ca2+ concentration ([Ca2+]i) via storeoperated Ca2+ entry, which involves components such as Orai1, transient receptor potential (TRP) canonical 1, stromal interaction molecules, and inositol 1,4,5-triphosphate (IP3) receptors (IP3Rs). Homer proteins are scaffold proteins that bind to G protein-coupled receptors, IP3Rs, ryanodine receptors, and TRP channels. However, their exact role in Ca2+ signaling in the salivary glands remains unknown. In the present study, we investigated the role of Homer2 in Ca2+ signaling and saliva secretion in parotid gland acinar cells under physiological conditions. Deletion of Homer2 (Homer2-/-) markedly decreased the amplitude of [Ca2+]i oscillations via the stimulation of carbachol, which is physiologically concentrated in parotid acinar cells, whereas the frequency of [Ca2+]i oscillations showed no difference between wild-type and Homer2-/- mice. Homer2-/- mice also showed a significant decrease in amylase release by carbachol in the parotid gland in a dose-dependent manner. These results suggest that Homer2 plays a critical role in maintaining [Ca2+]i concentration and secretion of saliva in mouse parotid gland acinar cells.