• 제목/요약/키워드: $Ca^{2+}$ Influx

검색결과 314건 처리시간 0.026초

Induction of Apoptosis in Human Monocytes by Human Cytomegalovirus is Related with Calcium Increase

  • Moon, Myung-Sook;Lee, Gyu-Cheol;Lee, Chan H.
    • Journal of Microbiology
    • /
    • 제40권3호
    • /
    • pp.224-229
    • /
    • 2002
  • The effect of human cytomegalovirus (HCMV) on three human monocyte cell lines at different stages of differentiation was investigated. While the viability of HL-60 cells or U-937 cells was not significantly affected by HCMV infection, the viability of THP-1 cells was reduced. Acridine orange/ethidiurn bromide staining revealed that the reduction of THP-1 cell viability was due to increased apoptotic death following HCMV infection. Apoptosis in HL-60 cells was not affected by HCMV infection, and induction of apoptosis of U-937 cells by HCMV was intermediate between HL-60 and THP-1 cells. Since HL-60 cells are the least differentiated and THP-1 cells are the most differentiated, the induction of apoptosis of human monocytes appears to be related to the degree of cell differentiation. Flow cytometric and confocal microscopic studies using fluorescent calcium indicator Fluo-3 suggested a significant increase in intracellular free calcium concentration ([Ca$\^$2+/]i) in THP-1 cells undergoing apoptosis by HCMV infection. Again [Ca$\^$2+/]i in HCMV-infected HL-60 cells was not critically altered, and that in HCMV-infected U-937 cells was intermediate between THP-1 cells and HL-60 cells. Calcium influx blockers such as verapamil and nifedipine partially reversed HCMV-induced apoptosis in THP-1 cells.

스피루리나 에탄올 추출물의 신경세포 보호활성 (Neuroprotective Activity of Spirulina maxima Hot Ethanol Extract)

  • 류가희;마충제
    • 생약학회지
    • /
    • 제52권3호
    • /
    • pp.149-156
    • /
    • 2021
  • Excessive glutamate can cause oxidative stress in neuronal cells and this can be the reason for neurodegenerative disease. In this study, we investigated the protective effect of Spirulina maxima hot ethanol extract on mouse hippocampal HT22 cell of which glutamate receptor has no function. HT22 cells were pre-treated with S. maxima sample at a dose dependent manner (1, 10 and 100 ㎍/ml). After an hour, glutamate was treated. Cell viability, reactive oxygen species (ROS) accumulation, Ca2+ influx, decrease of mitochondrial membrane potential level and glutathione related assays were followed by then. S. maxima ethanol extract improved the cell viability by suppressing the ROS and Ca2+ formation, retaining the mitochondrial membrane potential level and protecting the activity of the antioxidant enzymes compared with group of vehicle-treated controls. These suggest that S. maxima may decelerate the neurodegeneration by attenuating neuronal damage and oxidative stress.

Effects of Ginsenosides on $pp60^{c-src}$ Kinase, Intracellular Calcium and Cell Proliferation in NIH 373 Cells

  • Hong, Hee-Youn;Yoo, Gyurng-Soo;Choi, Jung-Kap
    • Journal of Ginseng Research
    • /
    • 제22권2호
    • /
    • pp.126-132
    • /
    • 1998
  • In the present study, we examined effects of ginseng saponins (ginsenosides) on pp60c-src protein tyrosine kinase (PTK) activity, intracellular calcium concentration ([$Ca^{2+}$]i), and cell proliferation in NIH3T3 cells. Eight different ginsenosides [ginsenoside-Rb1 (G-$Rb_1$), -$Rb_2$, -Rc, -Rd, -Re, -Rf, -$Rg_1$, -$Rg_2$) and ginseng total saponin (GTS) were used for these experiments. All ginsenosides and GTS tested stimulated the activation of $pp60^{c-src}$ kinase, and especially G-$Rb_1$,-Rd,-$Rg_1$, and -$Rg_1$ showed a higher stimulatory effect than others at 16.7 $\mu\textrm{g}$/ml of ginsenosides with a 18 hr-incubation, increasing the activity by 4.5, 3.5, 3.5, and 3.0-fold, respectively, over that of untreated control. In addition, both G-Rd and -$Rg_2$)Rg2 increased ($Ca^{2+}$), to 202 and 334 nM, respectively, about 2-3-fold above the basal level within 7min at 250 $\mu\textrm{g}$/yml of ginsenosides. The increases of ($Ca^{2+}$), were eliminated by Pretreatment of EGTA, an extracellular calcium chelator, suggtasting that they result from an influx of calcium ion from extracellular medium rather than an efflux from intracellular calcium store, endoplasmic reticulum (ER). All ginsenosides studied enhanced cell proliferation to 1.2-1.4-fold over that of untreated control at 5~250 $\mu\textrm{g}$/ml of concentrations. Interestingly the promotion of cell proliferation by ginsenosides corresponded with the activation of c-src kinase, which is an early step in the mitogenic signaling cascade. Taken together, we suggest that some ginsenosides may lead to cellProliferation via the activation of cellular signal transduction Pathway involving $pp60^{c-src}$ kinase.

  • PDF

토성(土性)과 용적밀도(容積密度)가 대두(大豆)의 뿌리 생장특성(生長特性)과 양분흡수기능(養分吸收機能)에 미치는 영향(影響) (Influence of Soil Texture and Bulk Density on Root Growth Characteristics and Nutrient Influx Rate of Soybean Plant)

  • 정영상;임형식
    • 한국토양비료학회지
    • /
    • 제22권3호
    • /
    • pp.221-227
    • /
    • 1989
  • 토성(土性)이 다른 두 토양(土壤)의 압밀상태(壓密狀態)가 대두(大豆)의 근생장특성(根生長特性)과 양분(養分)의 흡수기능처리(吸收機能差異)를 알아보기 위하여 용적밀도(容積密度)와 수분상태(水分狀態)를 달리한 Core에서의 유근신장(幼根伸長)과 용적밀도(容積密度)를 달리하여 pot재배(栽培)하였을 때 근(根)의 총(總)길이와 표면적(表面積), 근반경(根半徑) 및 양분(養分)의 흡수속도(吸收速度)를 조사(調査)한 결과(結果) 다음과 같다. 1. 대두(大豆)의 유근신장(幼根伸長)은 용적밀도(容積密度)가 낮을수록 빨랐으며 양토(壤土)에서는 토양수분(土壤水分) 상태(狀態)가 - 4bar 이하(以下)에서, 사양토(砂壤土)에서는 - 1bar 이하(以下)에서 급격(急激)히 감소(減少)하였다. 2. 유근(幼根)의 신장(伸長)은 ELE경도계(硬度計) 토양강도(土壤强度) 2.0 이상(以上)에서 급격(急激)히 감소(減少)하였으며, 근신장속도(根伸長速度)와 토양강도간(土壤强度間)에는 2차식(次式)으로 표시(表示)되었다. 그러나 사양토(砂壤土)에서 -10bar이하(以下)의 토양수분상태(土壤水分狀態)에서는 경도(硬度)에 관계(關係)없이 근신장속도(根伸長速度)가 낮았다. 3. pot재배시험(栽培試驗) 결과(結果), 뿌리의 총(總)길이는 용적밀도(容積密度)가 $1.2g/cm^3$인 양토(壤土)에서 가장 길었으며, $1.4g/cm^3$인 사양토(砂壤土)에서 가장 짧았다. 세근(細根)의 평균직경(平均直徑)은 사양토(砂壤土)에서 생육(生育)한 것이 양토(壤土)에서 생육(生育)한 것보다 굵었다. 뿌리의 총표면적(總表面積)은 용적밀도(容積密度)가 낮을수록 넓었으며, 양토(壤土)에서 사양토(砂壤土)보다 넓었다. 4. 양분(養分)의 흡수량(吸收量)은 건물생산(乾物生産)이 많은 양토(壤土)에서 많았다. 단위(單位)뿌리표면적당(表面積當) 흡수속도(吸收速度)는 질소(窒素)가 양토(壤土)에서 $597{\sim}753n\;mole/day{\cdot}cm^2$, 사양토(砂壤土)에서 $222{\sim}365n\;mole/day{\cdot}cm^2$이었으며, 용적밀도(容積密度)가 높은 토양(土壤)에서 높은 값을 보였다. K는 $99{\sim}175n\;mole/day{\cdot}cm^2$ P는 $26{\sim}46n\;mole/day{\cdot}cm^2$이었고, Ca와 Mg는 각각(各各) $175{\sim}230n\;mole/day{\cdot}cm^2$, $163{\sim}205n\;mole/day{\cdot}cm^2$의 범위(範圍)를 보였으며 토양간(土壤間)의 차이(差異)는 질소(窒素)보다 적은 경향(傾向)이었다.

  • PDF

Mouse Leukemia 세포에서 Adenosine 5'-triphosphate에 의한 Apoptosis (Apoptosis Induced by Adenosine 5'-triphosphate in Mouse Leukemic Cells)

  • 주난영;박규상;정해숙;공인덕;이중우
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권6호
    • /
    • pp.817-824
    • /
    • 1997
  • Extracellular ATP elicits various biological responses and plays a significant role in physiological regulation. Recently, ATP-induced growth inhibitions were reported in some tumor cell lines, but these effects and mechanisms are not well hewn. This study was conducted to investigate ATP-induced growth inhibition in mouse $leukemic(P388D_1)$ cells. ATP inhibited cell growth in a dose-dependent manner as analyzed by MTS assay$(IC_{50}: 33.1\;{\mu}M)$. Nucleotides other than ATP, such as ADP$(37.5;{\mu}M)$ and AMP$(33.2;{\mu}M)$ had the same effects as ATP but adenosine$(57.8;{\mu}M)$ showed less effect than ATP. ATP attenuated the cells in $G_0/G_l\;and\;G_2/M$ phases but increased those in S phase in flow cytometric analysis. Hypodiploid cells$(A_0)$, the presumptive findings of apoptosis, were found among the ATP-treated cells. ATP induced DNA fragmentation into $180{\mu}200\;bps $as measured by electrophoresis. some apoptotic cells were stained by TUNEL method. ATP increased the intracellular free $Ca^{++}$concentration$([Ca^{++}]_i)$ and the increment of $([Ca^{++}]_i)$ was caused by influx from the extracellular space. These results suggest that extracellular ATP induces growth inhibition through apoptosis.

  • PDF

기니픽 심장과 심근세포에서 Phenylephrine에 의한 PKC 활성화가 Mg2+ 유리에 미치는 영향 (Effects of phenylephrine-induced PKC activation on Mg2+ release in guinea pig heart and isolated ventricular myocytes)

  • 장성은;강형섭;김진상
    • 대한수의학회지
    • /
    • 제38권1호
    • /
    • pp.29-42
    • /
    • 1998
  • $Mg^{2+}$ is one of the most abundant divalent cations in mammalian body(0.2~1.0mM) and the important physiological roles are : first, the cofactor of many enzyme activities, second, the regulator of glycolysis and DNA synthesis, third, the important role of bioenergetics by regulating of phosphorylation, fourth, the influence of cardiac metabolism and function. In this work we have investigated the regulation of the $Mg^{2+}$ induced by ${\alpha}_1-adrenoceptor$ stimulation in perfused guinea pig hearts and isolated myocytes. The $Mg^{2+}$ content of the perfusate or the supernatant was measured by atomic absorbance spectrophotometry. The elimination of $Mg^{2+}$ in the medium increased the force of contraction of right ventricular papillary muscles, and the left ventricular pressure. Phenylephrine also enhanced the force of contraction in the presence of $Mg^{2+}-free$ medium. ${\alpha}_1-Agonists$ such as phenylephrine and methoxamine were found to induce $Mg^{2+}$ efflux in both perfused hearts and myocytes. These effects were blocked by prazosin, an ${\alpha}_1-adrenoceptor$ antagonist. The $Mg^{2+}$ influx could also be induced by phenylephrine and R59022, a diacylglycerol kinase inhibitor. In the presence of protein kinase C(PKC) inhibitors, phenylephrine produced an increase in $Mg^{2+}$ efflux from perfused hearts. Furthermore, $Mg^{2+}$ efflux by phenylephrine was amplified by phorbol 12-myristate 13-acetate(PMA). This enhancement of $Mg^{2+}$ efflux by PMA was blocked by prazosin in perfused hearts. By contrast, the $Mg^{2+}$ influx could be induced by verapamil, nifedipine, ryanodine in perfused hearts, but not in myocytes. $W^7$, a $Ca^{2+}$/calmodulin antagonist, completely blocked the phenylephrine-induced $Mg^{2+}$ efflux in perfused hearts. In conclusion, $Mg^{2+}$ is responsible for the cardiac activity associated with ${\alpha}_1-adrenoceptor$ stimulation. The mobilization of $Mg^{2+}$ is decreased or increased by ${\alpha}_1-adrenoceptor$ stimulation in guinea pig hearts. These responses may be related specifically to the respective pathways of signal transduction. A decrease in $Mg^{2+}$ efflux by ${\alpha}_1-adrenoceptor$ stimulation in hearts can be through PKC dependent and intracellular $Ca^{2+}$ levels.

  • PDF

심장세포에서 세포내 Ca2+ 증가에 의해 활성화되는 Cl- 통로의 특성과 역할 (Thecharacters of Ca2+ activated Cl- channel and its role in the cardiac myocytes)

  • 박춘옥;김양미;한재희;홍성근
    • 대한수의학회지
    • /
    • 제34권1호
    • /
    • pp.25-36
    • /
    • 1994
  • The inward tail current after a short depolarizing pulse has been known as Na-Ca exchange current activated by intracellular calcium which forms late plateau of the action potential in rabbit atrial myocytes. Chloride conductance which is also dependent upon calcium concentration has been reported as a possible tail current in many other excitable tissues. Thus, in order to investigate the exsitance of the calcium activated chloride current and its contribution to tail current, whole cell voltage clamp measurement has been made in single atrial cells of the rabbit. The current was recorded during repolarization following a brief 2 ms depolarizing pulse to +40mV from a holding potential of -70mV. When voltage-sensitive transient outward current was blocked by 2 mM 4-aminopyridine or replacement potassium with cesium, the tail current were abolished by ryanodine$(1{\mu}M)$ or diltiazem$(10{\mu}M)$ and turned out to be calcium dependent. The magnitudes of the tail currents were increased when intracellular chloride concentration was increased to 131 mM from 21 mM. The current was decreased by extracellular sodium reduction when intracellular chloride concentration was low(21 mM), but it was little affected by extracellular sodium reduction when intracellual chloride concentration was high(131 mM). The current-voltage relationship of the difference current before and after extracellular sodium reduction, shows an exponential voltage dependence with the largest magnitude of the current occurring at negative potentials, with is similar to current-voltage relationship at negative potentials, which is similar to current-voltage relationship of Na-Ca exchange current. The current was also decreased by $10{\mu}M$ niflumic acid and 1 mM bumetanide, which is well known anion channel blockers. The reversal potentials shifted according to changes in chloride concentration. The current-voltage relationships of the niflumic acid-sensitive currents in high and low concentration of chloride were well fitted to those predicted as chloride current. From the above results, it is concluded that calcium activated chloride component exists in the tail current with Na-Ca exchange current and it shows the reversal of tail current. Therefore it is thought that in the physiologic condition it leads to rapid end of action potential which inhibits calcium influx and it contributes to maintain the low intracellular calcium concentration with Na-Ca exchange mechanism.

  • PDF

산수유의 혈관이완효과 기전에 대한 연구 (Mechanism of Corni Fructus Induced Vasorelaxation in Rabbit Carotid Artery)

  • 김형준;박선영;김태연
    • 동의생리병리학회지
    • /
    • 제30권2호
    • /
    • pp.101-108
    • /
    • 2016
  • This study is conducted to investigate vasorelaxant effect of Corni Fructus(CF) on rabbit carotid artery. To determine vasorelaxant effect of CF on rabbit carotid artery, arterial sections with intact or removed endothelium were used in this organ bath study. After being contracted by phenylephrine(PE), arterial sections were treated with CF extract in a dose-dependent manner. To identity its mechanism, the contracted arterial sections by PE were pretreated with indomethacin(IM), tetraethylammonium chloride(TEA), Nω-nitro-L-arginine(L-NNA) or methylene blue(MB) and 1.0 ㎎/㎖ CF extract. We also studied to confirm the effect on influx of extracellular calcium chloride(Ca2+) of the CF extract in rabbit carotid artery. To measure the cytotoxicity of the CF extract, cell viability of human umbilical vein endothelial cell(HUVEC) was measured by MTT assay. Generation of nitric oxide(NO) was also measured by Griess reagent. The arterial sections with intact endothelium were relaxed significantly by CF extract, but this effect was inhibited in the arterial sections with damaged endothelium. The vasorelaxant effect was inhibited significantly when arterial sections were pretreated with IM, TEA, L-NNA, MB. In Ca2+-free krebs solution, increasing of arterial contraction by Ca2+ was also inhibited by CF significantly. The treatment of CF extract increased NO concentration in HUVEC. This study suggested that the vasorelaxant effect of CF extract would be related with endothelium derived relaxing factor(EDRF) such as NO, prostacyclin(PGI2), endothelium derived hyperpolarization factor(EDHF).

Effect of Various Divalent Ions on the Calcium Current of Adrenal Medullary Chromaffin Cells in the Rat

  • Kim, Jun;Leem, Chae-Hun;Kim, Sang-Jeong
    • The Korean Journal of Physiology
    • /
    • 제26권2호
    • /
    • pp.113-122
    • /
    • 1992
  • It is well known that chromaffin cells of adrenal medulla secrete catecholamine in response to sympathetic nerve activation and the influx of $Ca^{2+}$ through the voltage dependent $Ca^{2+}$ channels (VDCC) in the cell membrane do a major role in this secretory process. In this study, we explored the effect of divalent cations on VDCC of rat chromaffin cells. Rat (Sprague-Dawley rat, 150-250 gm) chromaffin cells were isolated and cultured. Standard giga seal, whole cell recording techniques were employed to study $Ca^{2+}$ current with external and internal solutions that could effectively isolate VDCC currents $(NMG\;in\;external\;and\;TEA\;and\;Cs^{2+}\;in\;internal\;solution)$. The voltage dependence and the inactivation time course of VDCC in our cells were identical to those of bovine chromaffin cells. A persistent inward current was first activated by depolarizing step pulse from the holding potential (H.P.) of -80 mV to -40 mV, increased to maximum amplitude at around +10 mV, and became smaller with progressively higher depolarizing pulses to reverse at around +60 mV. The inactivation time constant $(\tau)$, fitted from the long duration test potential (2 sec) was $1295.2{\pm}126.8$ msec $(n=20,\;1\;day\;of\;culture,\;mean\;{\pm}S.E.M.)$ and the kinetic parameters were not altered along the culture duration. Nicardipine $(10\;{\mu}M)$ blocked the current almost completely. Among treated divalent cations such as $Cd^{2+},\;Co^{2+},\;Ni^{2+},\;Zn^{2+}\;and\;,Mn^{2+},\;Cd^{2+}$ was the most potent blocker on VDCC. When the depolarizing step pulse from -80 mV to 10 mV was applied, the equilibrium dissociation constant $(K_d)$ of $Cd^{2+}\;was\;39\;{\mu}M,\;K_d\;of\;Co^{2+}\;was\;100\;{\mu}M\;and\;K_d\;of\;Ni^{2+}];was];780{\mu}M.$ The principal findings of this study are as follows. First, the majority of $Ca^{2+}$ channels in rat chromaffin cells are well classified to L-type $Ca^{2+}$ channel in the view of kinetics and pharmacology. Second, all divalent cations tested could block the $Ca^{2+}$ current and the most potent blocker among the tested was $Cd^{2+}$.

  • PDF

Provinol Inhibits Catecholamine Secretion from the Rat Adrenal Medulla

  • Lee, Jung-Hee;Seo, Yu-Seung;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권3호
    • /
    • pp.229-239
    • /
    • 2009
  • The aim of the present study was to examine the effect of provinol, which is a mixture of polyphenolic compounds from red wine, on the secretion of catecholamines (CA) from isolated perfused rat adrenal medulla, and to elucidate its mechanism of action. Provinol (0.3 ${\sim}$ 3 ${\mu}g/ml$) perfused into an adrenal vein for 90 min dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_N$ receptor agonist, 100 ${\mu}M$) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100 ${\mu}M$). Provinol itself did not affect basal CA secretion. Also, in the presence of provinol (1 ${\mu}g/ml$), the secretory responses of CA evoked by Bay-K-8644 (a voltage-dependent L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}M$), cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}M$) and veratridine (an activator of voltage-dependent $Na^+$ channels, 10 ${\mu}M$) were significantly reduced. Interestingly, in the simultaneous presence of provinol (1 ${\mu}g/ml$) plus L-NAME (a selective inhibitor of NO synthase, 30 ${\mu}M$), the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclpiazonic acid recovered to the considerable extent of the corresponding control secretion in comparison with the inhibition of provinol-treatment alone. Under the same condition, the level of NO released from adrenal medulla after the treatment of provinol (3 ${\mu}g/ml$) was greatly elevated in comparison to its basal release. Taken together, these data demonstrate that provinol inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the perfused rat adrenal medulla. This inhibitory effect of provinol seems to be exerted by inhibiting the influx of both calcium and sodium into the rat adrenal medullary cells along with the blockade of $Ca^{2+}$ release from the cytoplasmic calcium store at least partly through the increased NO production due to the activation of nitric oxide synthase.