• 제목/요약/키워드: $Ca^{2+}$ -activated $Cl^-$ channels

검색결과 25건 처리시간 0.023초

Role of Diacyl Glycerol (DAG) in Caprine Sperm Acrosomal Exocytosis Induced by Progesterone

  • Somanath, P.R.;Gandhi, K.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권8호
    • /
    • pp.1091-1097
    • /
    • 2002
  • Capacitated goat spermatozoa generated diacyl glycerol (DAG) when suspended in Krebs-Ringer bicarbonate medium and induced by progesterone or $Ca^{2+}$ ionophore A23187. We have added Sn-1-oleoyl-2-acetyl glycerol externally, to study the effect of DAG in goat sperm acrosomal exocytosis. Addition of neomycin abolished the DAG generating capacity of progesterone in a dose dependent manner, suggesting the involvement of a phosphoinositidase C activated phospholipase C system in the process. The level of increase in phosphatidic acid was considerably low and was produced well after the DAG generation thereby suggesting the involvement of a DAG kinase which phosphorylates DAG to produce PA. The inhibition of progesterone mediated effect by inhibitors of $GABA_A/Cl^{-}$ channel and $Ca^{2+}$ channels further supports the evidence that the events of binding of agonist to the receptor(s), opening of $Ca^{2+}$ channels and the activation of phospholipase C are reconciled to perform the function of acrosome reaction in capacitated goat spermatozoa.

Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology

  • Pozdnyakov, Ilya;Matantseva, Olga;Skarlato, Sergei
    • ALGAE
    • /
    • 제36권4호
    • /
    • pp.315-326
    • /
    • 2021
  • Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5-trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of G-protein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.

Activation of K+ channel by 1-EBIO rescues the head and neck squamous cell carcinoma cells from Ca2+ ionophore-induced cell death

  • Yin, Ming Zhe;Park, Seok-Woo;Kang, Tae Wook;Kim, Kyung Soo;Yoo, Hae Young;Lee, Junho;Hah, J. Hun;Sung, Myung Hun;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권1호
    • /
    • pp.25-33
    • /
    • 2016
  • Ion channels in carcinoma and their roles in cell proliferation are drawing attention. Intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$)-dependent signaling affects the fate of cancer cells. Here we investigate the role of $Ca^{2+}$-activated $K^+$ channel (SK4) in head and neck squamous cell carcinoma cells (HNSCCs) of dif-ferent cell lines; SNU-1076, OSC-19 and HN5. Treatment with $1{\mu}M$ ionomycin induced cell death in all the three cell lines. Whole-cell patch clamp study suggested common expressions of $Ca^{2+}$-activated $Cl^-$ channels (Ano-1) and $Ca^{2+}$-activated nonselective cation channels (CAN). 1-EBIO, an activator of SK4, induced outward $K^+$ current (ISK4) in SNU-1076 and OSC-19. In HN5, ISK4 was not observed or negligible. The 1-EBIO-induced current was abolished by TRAM-34, a selective SK4 blocker. Interestingly, the ionomycin-induced cell death was effectively prevented by 1-EBIO in SNU-1076 and OSC-19, and the rescue effect was annihilated by combined TRAM-34. Con-sistent with the lower level of ISK4, the rescue by 1-EBIO was least effective in HN5. The results newly demonstrate the role of SK4 in the fate of HNSCCs under the $Ca^{2+}$ overloaded condition. Pharmacological modulation of SK4 might provide an intriguing novel tool for the anti-cancer strategy in HNSCC.

Properties of Single $K^{+}$ Channels of Skeletal Muscle Incorporated into Planar Lipid Bilayer

  • Park, Jin-Bong;Kim, Hee-Jeong;Cho, Myung-Haing;Lee, Hang;Park, Hong-Ki;Lee, Mun-Han;Ryu, Pan-Dong
    • The Korean Journal of Physiology
    • /
    • 제29권1호
    • /
    • pp.13-27
    • /
    • 1995
  • single $K^{+}$ channels of skeletal muscle from the rat and frog were into planar lipid bilayers and their properties were studied. Fusion was induced by an osmotic gradient. Of the four types of $K^{+}$ channels recorded, the two most frequently observed were a voltage and $Ca^{2+}-activated$ $K^{+}$ channel and a $K^{+}$ channel with a prominent conductance substate. The first $K^{+}$ channel was identified as the large $Ca^{2+}-activated$ $K^{+}$ (BK) channel because the open-state probability was increased with depolarization (e-fold change per $10.6{\pm}3.5$ mV, n=8) and internal $Ca^{2+}$ (half-activation at $16.7{\pm}3.8$ mV, n=8, pCa 4) and its conductance was large ($247{\pm}4.9$ pS, n=24 in 0.1 M KCI). Lifetime distributions of open- and closed-states could be fitted with single exponentials of several milliseconds. The mean open- and closed-lifetimes were linearly dependent on the intracellular $[Ca^{2+}]$ and $1/[Ca^{2+}]$, respectively. The second $K^{+}$ channel showed a conductance substate at $30{\sim}60%$ of the open state. Its current-voltage relation was linear in the range of $-80\;{\sim}\;+80\;mV$. The slope conductance of the substate and open-state were 40 and 144 pS in 0.2 M KCl, respectively. The channel was highly selective for $K^{+}$ over Cl. The open-state probability was weakly voltage-dependent (e-fold change per 35 mV. The lifetime distributions of open- and closed-states were fitted with two exponentials and the major gating occurred slowly at several hundred milliseconds. Based on the above results, we think the second type of $K^{+}$ channel is the sarcoplasmic reticulum $K^{+}$ (SRK) channel. In addition, both types of channel were also incorporated into the lipids extracted from the skeletal muscle. The channel properties recorded in the bilayers termed from synthetic and extracted lipids were qualitatively similar. Our data indicate that BK and SRK channels are rich in the skeletal muscle and their properties and regulation could be effectively studied in planar lipid bilayer.

  • PDF

Calcium Signaling in Salivary Secretion

  • Kim, Jin Man;Lee, Sang-Woo;Park, Kyungpyo
    • Journal of Korean Dental Science
    • /
    • 제10권2호
    • /
    • pp.45-52
    • /
    • 2017
  • Calcium has versatile roles in diverse physiological functions. Among these functions, intracellular $Ca^{2+}$ plays a key role during the secretion of salivary glands. In this review, we introduce the diverse cellular components involved in the saliva secretion and related dynamic intracellular $Ca^{2+}$ signals. Calcium acts as a critical second messenger for channel activation, protein translocation, and volume regulation, which are essential events for achieving the salivary secretion. In the secretory process, $Ca^{2+}$ activates $K^+$ and $Cl^-$ channels to transport water and electrolyte constituting whole saliva. We also focus on the $Ca^{2+}$ signals from intracellular stores with discussion about detailed molecular mechanism underlying the generation of characteristic $Ca^{2+}$ patterns. In particular, inositol triphosphate signal is a main trigger for inducing $Ca^{2+}$ signals required for the salivary gland functions. The biphasic response of inositol triphosphate receptor and $Ca^{2+}$ pumps generate a self-limiting pattern of $Ca^{2+}$ efflux, resulting in $Ca^{2+}$ oscillations. The regenerative $Ca^{2+}$ oscillations have been detected in salivary gland cells, but the exact mechanism and function of the signals need to be elucidated. In future, we expect that further investigations will be performed toward better understanding of the spatiotemporal role of $Ca^{2+}$ signals in regulating salivary secretion.

Extracellular ATP Stimulates $Na^+\;and\;Cl^-$ Transport through the Activation of Multiple Purinergic Receptors on the Apical and Basolateral Membranes in M-1 Mouse Cortical Collecting Duct Cells

  • Jung, Jin-Sup;Hwang, Sook-Mi;Lee, Ryang-Hwa;Kang, Soo-Kyung;Woo, Jae-Suk;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권3호
    • /
    • pp.231-241
    • /
    • 2001
  • The mammalian cortical collecting duct (CCD) plays a major role in regulating renal NaCl reabsorption, which is important in $Na^+$ and $Cl^-$ homeostasis. The M-1 cell line, derived from the mouse cortical collecting duct, has been used as a mammalian model of the study on the electrolytes transport in CCD. M-1 cells were grown on collagen-coated permeable support and short circuit current $(I_{sc})$ was measured. M-1 cells developed amiloride-sensitive current $5{\sim}7$ days after seeding. Apical and basolateral addition of ATP induced increase in $I_{sc}$ in M-1 cells, which was partly retained in $Na^+-free$ or $Cl^--free$ solution, indicating that ATP increased $Na^+$ absorption and $Cl^-$ secretion in M-1 cells. $Cl^-$ secretion was mediated by the activation of apical cystic fibrosis transmembrane regulator (CFTR) chloride channels and $Ca^{2+}-activated$ chloride channels, but $Na^+$ absorption was not mediated by activation of epithelal sodium channel (ENaC). ATP increased cAMP content in M-1 cells. The RT-PCR analysis demonstrated that M-1 cells express $P2Y_2,\;P2X_3\;and\;P2Y_4$ receptors. These results showed that ATP regulates $Na^+$ and $Cl^-$ transports via multiple P2 purinoceptors on the apical and basolateral membranes in M-1 cells.

  • PDF

The role of ginseng total saponin in transient receptor potential melastatin type 7 channels

  • Kim, Byung Joo
    • Animal cells and systems
    • /
    • 제16권5호
    • /
    • pp.376-384
    • /
    • 2012
  • Although ginsenosides have a variety of physiologic or pharmacologic functions in various regions, there are only a few reports on the effects of transient receptor potential melastatin 7 (TRPM7) channels. Here, we showed evidence suggesting that TRPM7 channels play an important role in ginseng total saponin (GTS)-mediated cellular injury. The combination techniques of electrophysiology, pharmacological analysis, small interfering RNA (siRNA) method and cell death assays were used. GTS depolarized the resting membrane potentials and decreased the amplitude of pacemaker potentials in cultured interstitial cells of Cajal (ICCs) in gastrointestinal (GI) tract. The TRPM7-like currents in single ICCs and the overexpressing TRPM7 in HEK293 cells were inhibited by GTS. However, GTS had no effect on $Ca^{2+}$-activated $Cl^-$ conductance. GTS inhibited the survival of human gastric (AGS) and brea (MCF-7) adenocarcinoma cells. Also, GTS inhibited the TRPM7-like currents in AGS and MCF-7 cells. The GTS-mediated cytotoxicity was inhibited by TRPM7-specific siRNA. In addition, we showed that overexpression of TRPM7 channels in HEK293 cells was inhibited by GTS. Thus, TRPM7 channels are involved in GTS-mediated cell death in AGS and MCF-7 cells, and these channels may represent a novel target for physiological disorders where GTS plays an important role.

Effects of Noradrenaline on the Membrane Potential of Prostatic Neuroendocrine Cells of Rat

  • Kim, Jun-Hee;Shin, Sun-Young;Uhm, Dae-Yong;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권1호
    • /
    • pp.47-52
    • /
    • 2003
  • The prostate gland contains numerous neuroendocrine cells that are believed to influence the function of the prostate gland. Our recent study demonstrated the expression of both ${\alpha}1$- and ${\alpha}2$-ARs, signaling the release of stored $Ca^{2+}$ and the inhibition of N-type $Ca^{2+}$ channels, respectively, in rat prostate neuroendocrine cells (RPNECs). In this study, the effects of NA on the resting membrane potential (RMP) of RPNECs were investigated using a whole-cell patch clamp method. Fresh RPNECs were dissociated from the ventral lobe of rat prostate and identified from its characteristic shape; round or oval shape with dark cytoplasm. Under zero-current clamp conditions with KCl pipette solution, the resting membrane potential (RMP) of RPNECs was between -35 mV and -85 mV. In those RPNECs with relatively hyperpolarized RMP (<-60 mV), the application of noradrenaline (NA, $1{\mu}M$) depolarized the membrane to around -40 mV. In contrast, the RPNECs with relatively depolarized RMP (>-45 mV) showed a transient hyperpolarization and subsequent fluctuation at around -40 mV on application of NA. Under voltage clamp conditions (holding voltage, -40 mV) with CsCl pipette solution, NA evoked a slight inward current (<-20 pA). NA induced a sharp increase of cytosolic $Ca^{2+}$ concentration ($[Ca^{2+}]_c$), measured by the fura-2 fluorescence, and the voltage clamp study showed the presence of charybdotoxin-sensitive $Ca^{2+}$-activated $K^+$ currents. In summary, adrenergic stimulation induced either depolarization or hyperpolarization of RPNECs, depending on the initial level of RMP. The inward current evoked by NA and the $Ca^{2+}$-activated $K^+$ current might partly explain the depolarization and hyperpolarization, respectively.

DA-6034 Induces $[Ca^{2+}]_i$ Increase in Epithelial Cells

  • Yang, Yu-Mi;Park, Soonhong;Ji, HyeWon;Kim, Tae-Im;Kim, Eung Kweon;Kang, Kyung Koo;Shin, Dong Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권2호
    • /
    • pp.89-94
    • /
    • 2014
  • DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces $Ca^{2+}$ signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in $Ca^{2+}$ signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated $Ca^{2+}$-activated $Cl^-$ channels (CaCCs) and increased intracellular calcium concentrations ($[Ca^{2+}]_i$) in primary cultured human conjunctival cells. DA-6034 also increased $[Ca^{2+}]_i$ in mouse salivary gland cells and human corneal epithelial cells. $[Ca^{2+}]_i$ increase of DA-6034 was dependent on the $Ca^{2+}$ entry from extracellular and $Ca^{2+}$ release from internal $Ca^{2+}$ stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate ($IP_3$) pathway and lysosomal $Ca^{2+}$ stores. These results suggest that DA-6034 induces $Ca^{2+}$ signaling via extracellular $Ca^{2+}$ entry and RyRs-sensitive $Ca^{2+}$ release from internal $Ca^{2+}$ stores in epithelial cells.

Comparison of Membrane Currents in Xenopus Oocytes in Response to Injection of Calcium Influx Factor (CIF) and Depletion of Intracellular Calcium Stores

  • Kim, Hak-Yong;Hanley, Michael R.
    • BMB Reports
    • /
    • 제33권3호
    • /
    • pp.202-207
    • /
    • 2000
  • The depletion of intracellular calcium stores by thapsigargin treatment evoked extracellular calcium-dependent membrane currents in Xenopus laevis oocytes. These currents have been compared to those evoked by microinjection of a calcium influx factor (CIF) purified from Jurkat T lymphocytes. The membrane currents elicited by thapsigargin treatment (peak current, $163{\pm}60$ nA) or CIF injection (peak current, $897{\pm}188$ nA) were both dependent on calcium entry, based on their eradication by the removal of extracellular calcium. The currents were, in both cases, attributed primarily to well-characterized $Ca^{2+}-dependent$ $Cl^-$ currents, based on their similar reversal potentials (-24 mV vs. -28 mV) and their inhibition by niflumic acid (a $Cl^-$ channel blocker). Currents induced by either thapsigargin treatment or CIF injection exhibited an identical pattern of inhibitory sensitivity to a panel of lanthanides, suggesting that thapsigargin treatment or CIF injection evoked $Cl^-$ currents by stimulating calcium influx through pharmacologically identical calcium channels. These results indicate that CIF acts on the same calcium entry pathway activated by the depletion of calcium stores and most lanthanides are novel pharmacological tools for the study of calcium entry in Xenopus oocytes.

  • PDF