• Title/Summary/Keyword: $C_60^-

Search Result 13,880, Processing Time 0.038 seconds

Reactions and Properties of Fullerene ($C_{60}$) (풀러렌의 성질과 반응)

  • Lim, Choong-Sun;Hong, Seong-Kyu;Ko, Weon-Bae
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.74-79
    • /
    • 2010
  • In this review, the properties of buckminsterfullerene and its organic and polymeric reactions were focused. In addition, polymer blending with $C_{60}$ will be briefly introduced. As soon as $C_{60}$ was discovered, chemists put their efforts to explore its reactivity with other compounds. The knowledge of the organic reactions with $C_{60}$ was extended to construct different types of fullerene polymers such as side chain fullerene polymers, main chain fullerene polymers, star shaped fullerene polymers, and dendritic fullerene polymers.

Encapsulation of Fullerenes in Single-walled Carbon Nanotubes and their Characteristic Analysis by Raman Spectroscopy (단일벽 탄소나노튜브의 플러렌 캡슐화 및 라만분광 분석)

  • Goak, Jeung-Choon;Lee, Nae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Single walled carbon nanotubes (SWCNTs) can be modified to produce a new concept of hybrid materials by introducing atoms or molecules inside their cylindrical empty space. Such an endohedral doping of the SWCNTs is expected to decisively alter their electronic transport and mechanical properties, In this study, we purified SWCNTs by three-step purification processes and formed the peapod structure by introducing $C_{60}$ fullerenes inside the SWCNTs. $C_{60}$ molecules were observed to be regularly arranged by transmission electron microscopy. In Raman spectra, the radial breathing mode (RBM) rather than the other modes was significantly affected by the endohedral injection of $C_{60}$. The RBM intensity was more greatly reduced in the large-diameter SWCNTs than the small-diameter ones, Raman spectroscopy is expected to be a key technique for analyzing $C_{60}$-encapsulated SWCNTs.

Electrical Properties of Photovoltaic Cell Using C60 (C60을 이용한 광기전 소자의 전기적 특성 연구)

  • Lee, Ho-Sik;Ahn, Jun-Ho;Lee, Won-Jae;Jang, Kyung-Uk;Choi, Myung-Kyu;Kim, Tae-Wan;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.512-513
    • /
    • 2005
  • We have fabricated solar cell devices based on zinc-phthalocyanine(ZnPc) as donor(D) and fullerene(C60) as electron acceptor(A) with doped charge transport layers, and BCP and $Alq_3$ as an exciton blocking layer(EBL). We have measured the photovoltaic characteristics of the solar cell devices using the Xe lamp as a light source. We were use of $Alq_3$ layer leads to external power conversion efficiency was 2.65% at illumination intensity $100mW/cm^2$. Also we confirmed the optimum thickness ratio of the DA hetero-junction is about 1:2.

  • PDF

Synthesis of Hybrid Fullerene Oxide[C60(O)n, (n≥1)] - Silver Nanoparticle Composites and Their Catalytic Activity for Reduction of 2-, 3-, 4-Nitroaniline

  • Park, Jeong Hoon;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.252-256
    • /
    • 2019
  • Fullerene oxide[$C_{60}(O)_n$, ($n{\geq}1$)] was synthesized by dissolving fullerene[$C_{60}$] and 3-chloroperoxybenzoic acid in toluene under refluxing condition for 5 h. Hybrid fullerene oxide-silver nanoparticle composites were synthesized by dissolving fullerene oxide and silver nitrate[$AgNO_3$] in diethylene glycol under ultrasonic irradiation for 3 h. The synthesized hybrid nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, and ultraviolet-visible[UV-vis] spectroscopy. The catalytic activity for the reduction of various nitroanilines[NAs] was identified by UV-vis spectrophotometer. The efficiency of the catalytic reduction by the synthesized hybrid nanocomposites has an order of 4-NA > 2-NA > 3-NA.

Characteristics on non-shielding Nd:YAG Laser Welding of 69TR-R and CHSP60C, 600MPa grade steels - Comparison of characteristics on bead on plate welded part - (600MPa급 60TR-R 및 CHSP60C의 난실드 Nd:YAG 레이저에 따른 특성 비교 - 비드 온 플래이트 용접부 특성의 비교 -)

  • 권민석;한태교;김병익;이봉근;강정윤;정병훈
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.100-102
    • /
    • 2004
  • 인장강도 600MPa 이상을 가지는 TRIP형 고장력 강판인 60TR-R과 석출경화형 합금인 CHSP60C는 자동차용 소재로 주목을 받고 있다. 또한 레이저 용접은 열 변형이 적고 비드 외관이 미려할 뿐만 아니라 연속 및 고속 용접이 가능하여 생산성 및 정밀성, 안정성이 높아 자동차조립 및 부품 제조공정에 적용되고 있다. (중략)

  • PDF

Inhibition of Cell-Cycle Progression in Human Promyelocytic Leukemia HL-60 Cells by MCS-C2, Novel Cyclin-Dependent Kinase Inhibitor

  • Kim, Min-Kyoung;Cho, Youl-Hee;Kim, Jung-Mogg;Chun, Moon-Woo;Lee, Seung-Ki;Lim, Yoong-Ho;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.607-612
    • /
    • 2003
  • To elucidate the action mechanism of MCS-C2, a novel analogue of toyocamycin and sangivamycin, its effect on the expression of cell cycle-related proteins in the human myelocytic leukemia cell line HL-60 was examined using Western blotting and a flow cytometric analysis. MCS-C2, a selective inhibitor of cyclin-dependent kinases, was found to inhibit cell growth in a time- and dose-dependent manner, and inhibits cell cycle progression by inducing the arrest at G1 and G2/M phases, in HL-60 cells. The flow cytometric analysis revealed an appreciable arrest of cells in the G2/M phase of the cell cycle after treatment with MCS-C2. The HL-60 cell population increased gradually from 13% at 0 h, to 28% at 12 h in the G2/M phase, after exposure to $2{\;}\mu\textrm{M}$ MCS-C2. Furthermore, Western blot analysis demonstrated that MCS-C2 induced the cell cycle arrest at G1 phase through the inhibition of pRb phosphorylation. Hypophosphorylated pRb accumulated after treatment with $5{\;}\mu\textrm{M}$ MCS-C2 for 12 h, whereas, the level of hyperphosphorylated pRb was reduced. Thus, treatment of the cell with MCS-C2 suppressed the hyperphosphorylated form of pRb with a commensurate increase in the hypophosphorylated form.

Saccharification and Fermentation Capability of the Waste from Beer Fermentation Broth (맥주 폐 효모액의 당화 및 에탄올 발효능)

  • Kang, MinKyung;Kim, Minah;Yu, Bowan;Park, Joong Kon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.709-715
    • /
    • 2013
  • The waste from beer fermentation broth (WBFB) has been found an excellent and inexpensive resource for bioethanol production. We tried to evaluate the saccharification and fermentation capabilities of WBFB to confirm its effectiveness for bioethanol production. The saccharification potentials of the WBFB were evaluated at various temperatures (30, 40, 50, 60 and $70^{\circ}C$). It was found that the saccharification capabilities increased with temperature and highest reached maximum at $60^{\circ}C$ and $70^{\circ}C$ after 4h. Ethanol production from a mixture of WBFB and chemically defined media (CDM) without addition of any microbial species confirmed the fermentation capabilities of WBFB. Simultaneous saccharification and fermentation were performed using WBFB, starch solution and CDM as culturing media. The maximum yield of bioethanol production was obtained at $30^{\circ}C$. The saccharifying enzymes and the yeast cells present in WBFB were essential factors for the production of bioethanol from WBFB without any additional enzymes or microbial cells.