• Title/Summary/Keyword: $C_3F_6$ gas

Search Result 136, Processing Time 0.029 seconds

The Characteristics of Residual Films on Silicon Surface $CHF_3/C_2F_6$ Reactive Ion Etching ($CHF_3/C_2F_6$ 플라즈마에 의한 실리콘 표면 잔류막의 특성)

  • 권광호;박형호;이수민;강성준;권오준;김보우;성영권
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.145-152
    • /
    • 1992
  • Si surfaces exposed to CHF3/C2F6 gas plasmas ih reactive ion etching (RIE) have been characterized by X-ray photoelectron spectroscopy (XPS). CHF3/C2F6 gas plasma exposure of Si surface leads to the deposition of residual film containing carbon and fluorine. The narrow scan spectra of C 1s show various bonding states of carbon as C-Si, C-F/H, C-CFx(x $\leq$ 3), C-F, C-F2, and C-F3. The chemical bonding states of fluorine are described with F-Si, F-C and F-O. And the oxygen and silicon are also detected. The effects of parameters for reactive ion etching as CHF3/C2F6 gas ratio, RF power, and pressure are investigated.

  • PDF

Research on Liquefaction Characteristics of SF6 Substitute Gases

  • Yuan, Zhikang;Tu, Youping;Wang, Cong;Qin, Sichen;Chen, Geng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2545-2552
    • /
    • 2018
  • $SF_6$ has been widely used in high voltage power equipment, such as gas insulated switchgear (GIS) and gas insulated transmission line (GIL), because of its excellent insulation and arc extinguishing performance. However, $SF_6$ faces two environmental problems: greenhouse effect and high liquefaction temperature. Therefore, to find the $SF_6$ substitute gases has become a research hotspot in recent years. In this paper, the liquefaction characteristics of $SF_6$ substitute gases were studied. Peng-Robinson equation of state with the van der Waals mixing rule (PR-vdW model) was used to calculate the dew point temperature of the binary gas mixtures, with $SF_6$, $C_3F_8$, $c-C_4F_8$, $CF_3I$ or $C_4F_7N$ as the insulating gas and $N_2$ or $CO_2$ as the buffer gas. The sequence of the dew point temperatures of the binary gas mixtures under the same pressure and composition ratio was obtained. $SF_6/N_2$ < $SF_6/CO_2$ < $C_3F_8/N_2$ < $C_3F_8/CO_2$ < $CF_3I/N_2$ < $CF_3I/CO_2$ < $c-C_4F_8/N_2$ < $C_4F_7N/N_2$ < $c-C_4F_8/CO_2$ < $C_4F_7N/CO_2$. $SF_6/N_2$ gas mixture showed the best temperature adaptability and $C_4F_7N/CO_2$ gas mixture showed the worst temperature adaptability. Furthermore, the dew point temperatures of the $SF_6$ substitute gases at different pressures and the upper limits of the insulating gas mole fraction at $-30^{\circ}C$, $-20^{\circ}C$ and $-10^{\circ}C$ were obtained. The results would supply sufficient data support for GIS/GIL operators and researchers.

Decrease of Global Warming Effect During Dry Etching of Silicon Nitride Layer Using C3F6O/O2 Chemistries

  • Kim, Il-Jin;Moon, Hock-Key;Lee, Jung-Hun;Jung, Jae-Wook;Cho, Sang-Hyun;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.459-459
    • /
    • 2012
  • Recently, the discharge of global warming gases in dry etching process of TFT-LCD display industry is a serious issue because perfluorocarbon compound (PFC) gas causes global warming effects. PFCs including CF4, C2F6, C3F8, CHF3, NF3 and SF6 are widely used as etching and cleaning gases. In particular, the SF6 gas is chemically stable compounds. However, these gases have large global warming potential (GWP100 = 24,900) and lifetime (3,200). In this work, we chose C3F6O gas which has a very low GWP (GWP100 = <100) and lifetime (< 1) as a replacement gas. This study investigated the effects of the gas flow ratio of C3F6O/O2 and process pressure in dual-frequency capacitively coupled plasma (CCP) etcher on global warming effects. Also, we compared global warming effects of C3F6O gas with those of SF6 gas during dry etching of a patterned positive type photo-resist/silicon nitride/glass substrate. The etch rate measurements and emission of by-products were analyzed by scanning electron Microscopy (SEM; HITACI, S-3500H) and Fourier transform infrared spectroscopy (FT-IR; MIDAC, I2000), respectively. Calculation of MMTCE (million metric ton carbon equivalents) based on the emitted by-products were performed during etching by controlling various process parameters. The evaluation procedure and results will be discussed in detail.

  • PDF

A Study on Etching of Si3N4 Thin Film and the Exhausted Gas Using C3F6 Gas for LCD Process (LCD 공정용 C3F6 가스를 이용한 Si3N4 박막 식각공정 및 배출가스에 관한 연구)

  • Jeon, S.C.;Kong, D.Y.;Pyo, D.S.;Choi, H.Y.;Cho, C.S.;Kim, B.H.;Lee, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.4
    • /
    • pp.199-204
    • /
    • 2012
  • $SF_6$ gas is widely used for dry etching process of semiconductor and display fabrication process. But $SF_6$ gas is considered for typical greenhouse gas for global warming. So it is necessary to research relating to $SF_6$ alternatives reducing greenhouse effect in semiconductor and display. $C_3F_6$ gas is one of the promising candidates for it. We studied about etch characteristics by performing Reactive Ion Etching process of dry etching and reduced gas element exhausted on etching process using absorbent Zeolite 5A. $Si_3N_4$ thin film was deposited to 500 nm with Plasma Enhanced Chemical Vapor Deposition and we performed Reactive Ion Etching process after patterning through photolithography process. It was observed that the etch rate and the etched surface of $Si_3N_4$ thin film with Scanning Electron Microscope pictures. And we measured and compared the exhausted gas before and after the absorbent using Gas Chromatograph-Mass Spectrophotometry.

The Character of Electron Ionization and Attachment Coefficients in Perfluoropropane(C3F8) Molecular Gas by the Boltzmann Equation (볼츠만 방정식에 의한 C3F8분자가스의 전리 및 부착 계수에 관한 연구)

  • Song, Byoung-Doo;Jeon, Byoung-Hoon;Ha, Sung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.375-380
    • /
    • 2005
  • CF₄ molecular gas is used in most of semiconductor manufacture processing and SF/sub 6/ molecular gas is widely used in industrial of insulation field. but both of gases have defect in global warming. C₃F/sub 8/ gas has large attachment cross-section more than these gases, moreover GWP, life-time and price of C₃F/sub 8/ gas is lower than them, therefor it is important to calculate transport coefficients of C₃F/sub 8/ gas like electron drift velocity, ionization coefficient, attachment coefficient, effective ionization coefficient and critical E/N. The aim of this study is to get these transport coefficients for imformation of the insulation strength and efficiency of etching process. In this paper, we calculated the electron drift velocity (W) in pure C₃F/sub 8/ molecular gas over the range of E/N=0.1∼250 Td at the temperature was 300 K and gas pressure was 1 Torr by the Boltzmann equation method. The results of this paper can be important data to present characteristic of gas for plasma etching and insulation, specially critical E/N is a data to evaluate insulation strength of a gas.

Improvement of Etch Rate and Profile by SF6, C4F8, O2 Gas Modulation (SF6, C4F8, O2 가스 변화에 따른 실리콘 식각율과 식각 형태 개선)

  • Kwon, Soon-Il;Yang, Kea-Joon;Song, Woo-Chang;Lim, Dong-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.305-310
    • /
    • 2008
  • Deep trench etching of silicon was investigated as a function of RF source power, DC bias voltage, $C_4F_8$ gas flow rate, and $O_2$ gas addition. On increasing the RF source power from 300 W to 700 W, the etch rate was increased from $3.52{\mu}m/min$ to $7.07{\mu}m/min$. The addition of $O_2$ gas improved the etch rate and the selectivity. The highest etch rate is achieved at the $O_2$ gas addition of 12 %, The selectivity to PR was 65.75 with $O_2$ gas addition of 24 %. At DC bias voltage of -40 V and $C_4F_8$ gas flow rate of 30 seem, We were able to achieve etch rate as high as $5.25{\mu}m/min$ with good etch profile.

Global Warming Gas Emission during Plasma Cleaning Process of Silicon Nitride Using C-C$_4$F$_8$O Feed Gas with Additive $N_2$

  • Kim, K.J.;Oh, C.H.;Lee, N.-E.;Kim, J.H.;Bae, J.W.;Yeom, G.Y.;Yoon, S.S.
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.5
    • /
    • pp.403-408
    • /
    • 2001
  • In this work, the cyclic perfluorinated ether (c-C$_4$F$_{8}$O) with very high destructive removal efficiency (DRE) than other alternative gases, such as $C_3$F$_{8}$, c-C$_4$F$_{8}$ and NF$_3$ was used as an alternative process chemical. The plasma cleaning of silicon nitride using gas mixtures of c-C$_4$F$_{8}$O/O$_2$ and c-C$_4$F$_{8}$O/O$_2$+ $N_2$ was investigated in order to evaluate the effects of adding $N_2$ to c-C$_4$F$_{8}$O/O$_2$ on the global warming effects. Under optimum condition, the emitted net perfluorocompounds (PFCs) during cleaning of silicon nitride were quantified and then the effects of additive $N_2$ by obtaining the destructive removal efficiency (DRE) and the million metric tons of carbon equivalent (MMT-CE) were calculated. DRE and MMTCE were obtained by evaluating the volumetric emission using. Fourier transform-infrared spectroscopy (FT-IR). During the cleaning using c-C$_4$F$_{8}$O/O$_2$+$N_2$, DRE values as high as (equation omitted) 98% were obtained and MMTCE values were reduced by as high as 70% compared to the case of $C_2$F$_{6}$O$_2$. Recombination characteristics were indirectly investigated by combining the measurements of species in the chamber using optical emission spectroscopy (OES), before and after the cleaning, in order to understand any correlation between plasma and emission characteristics as well as cleaning rate of silicon nitride.silicon nitride.

  • PDF

Output Characteristics of XeF$(C\rightarrowA$ Laser for the variation of Xe concentration under the pressures of broad region (넓은 범위의 압력에서 Xe 농도 변화에 대한 XeF$(C\rightarrowA$ 레이저의 출력특성)

  • 류한용;이주희
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.214-221
    • /
    • 1995
  • When the broad pressure region (0.5-3.5 atm) of laser media is pumped by 70 ns [FWHM] electronbeam accelerator (800 kV, 21 kA), the correlation between free-runnuing XeF$(C\rightarrowA$ excimer laser output and Xe concentration are studied. The resonator consisted of dichroic output coupler, and the laser output is optimized with laser media $(Xe/F_2/Ar)$ as functions of total pressure and gas mixing ratio. Under the condition of F2 0.46% fixed, the laser intrinsic efficiencies of 0.38%, 1.03%, and 0.29% are obtained at 1. 2, and 3 atm, respectively. So then the peaks of laser intrinsic efficiency occured to the higher Xe concentration with decreasing total gas pressure. By analyzing the kinetics for the $XeF^*(C)$ formation efficiency and XeF$(C\rightarrowA$ laser extraction efficiency the dependence of Xe concentration on their correlation is explained. As the results we propose efficient operation of an atmosphericpressure XeF$(C\rightarrowA$ laser. laser.

  • PDF

Deposition of Super Hydrophobic a-C:F Films by Dielectric Barrier Discharge at Atmospheric Pressure

  • Kim, Duk-Jae;Kim, Yoon-Kee;Han, Jeon-Geon
    • Journal of Surface Science and Engineering
    • /
    • v.44 no.2
    • /
    • pp.50-54
    • /
    • 2011
  • Hydrophobic a-C:F film was coated on polycarbonate film with $CF_4$, $C_2F_6$ and HFC ($C_2F_4H_2$) gas in helium discharge generated by 5~100 kHz AC power supply at atmospheric pressure and room temperature. The highest water contact angle of the a-C:F film formed with $He/C_2F_6$ mixed gas is $155^{\circ}$. X-ray photoelectron spectrum showed that there was 40% of C-$CF_3$ bond at the surface of the super hydrophobic film. The contact angle and deposition rate were decreased with increasing substrate temperature. The contact angle was generally increased with the surface roughness of the film. The contact angle was high when the surface microstructure of the film was fine and sharp at the similar roughness and chemical composition of the surface.