• Title/Summary/Keyword: $C_{max}$

Search Result 1,796, Processing Time 0.031 seconds

Analysis of the Vibration Characteristic for the Mine Detectable Test Platform (지뢰탐지 실험플랫폼의 진동 특성 분석)

  • Chang, YuShin;Kwak, NoJin;Han, SeungHoon;Ji, UnHo;Ji, ChangJin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.588-595
    • /
    • 2014
  • In this paper, analysis of the vibration Characteristic for the Mine Detectable Test Platform is described. The test platform system is the multi-sensor mine detectable vehicle. This multi-sensor mine detectable unit is more efficient detection performance than other conventional methods. The test platform system has five subsystems, the UWB(Ultra Wide Band) sensor scanner, the MD(Metal Detector) sensor scanner, the neutron sensor scanner, and the detectable vehicle. We perform the vibration tests for the test platform and analyze the vibration characteristic, such as the max displacement, the max deformation and the max Von-Misses Stress.

  • PDF

Pharmacokinetics of oxolinic acid in cultured olive flounder Paralichthys olivaceus by oral administration, injection and dipping (Oxolinic acid의 경구투여, 주사 및 약욕에 따른 넙치, Paralichthys olivaceus 체내 약물동태학적 특성)

  • Jung, Sung-Hee;Choi, Dong-Lim;Kim, Jin-Woo;Jo, Mi-Ra;Jee, Bo-Young;Seo, Jung-Soo
    • Journal of fish pathology
    • /
    • v.22 no.2
    • /
    • pp.125-135
    • /
    • 2009
  • The pharmacokinetic properties of oxolinic acid (OA) were studied after oral administration, intraperitoneal injection and dipping to cultured olive flounder, Paralichthys olivaceus (average 90 g, $23{\pm}1{^{\circ}C}$). Plasma samples were taken at 3, 5, 10, 15, 24, 30, 48, 96 and 144 h post-dose. In oral dosage at 15, 30 and 60 ㎎/㎏, the peak plasma concentrations of OA, which attained at 10~15 h post-dose, were 1.92, 2.45 and 3.72 $\mu{g}/m\ell$, respectively. In intraperitoneal injection with 10 and 20 ㎎/㎏, the peak plasma concentrations of OA, which attained at 10 h post-dose, were 4.1 and 4.8 $\mu{g}/m\ell$, respectively. In dipping in 30 and 50 ppm for 1 h, peak concentrations were observed at 5 h and 30 h post-dose, were 0.22 and 0.38 $\mu{g}/m\ell$, respectively. The kinetic profile of absorption, distribution and elimination of OA in plasma were analyzed fitting to a one-compartment model by WinNonlin program. Calculated parameters for a single oral dosage of 15, 30 and 60 ㎎/㎏, respectively, were: AUC (the area under the concentration-time curve)=70.93, 120.0 and 141.86 $\mu{g}$ $h/m\ell$ $T_{max}$ (time for maximum concentration)=16.22, 20.39 and 17.33 h; $C_{max}$ (maximum concentration)=���D1.61, 2.40 and 3.01 $\mu{g}/m\ell$. Following intraperitoneal injection of 10 and 20 ㎎/㎏, these parameters were AUC=184.7 and 315.92 $\mu{g}$ $h/m\ell$ $T_{max}$=5.91 and 6.26 h; $C_{max}$=4.19 and 4.45 $\mu{g}/m\ell$. Following dipping at 30 and 50 ppm, these parameters were AUC=17.58 and 21.69 $\mu{g}$ $h/m\ell$ $T_{max}$=19.08 and 31.43 h; $C_{max}$x=0.22 and 0.25 $\mu{g}/m\ell$.

Explosion Hazard Assessment of Pharmaceutical Raw Materials Powders (원료의약품 분진의 폭발 위험성 평가)

  • Lee, Joo Yeob;Lee, Keun Won;Park, Sang Yong;Han, In Soo
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.600-608
    • /
    • 2017
  • Hazard risk of explosion on pharmaceutical raw materials dust in pharmaceutical industry often exists when it is handled or processed in the industrial sites, and explosion accident is caused by this. In this study, the dust explosion characteristics of the three pharmaceutical raw materials samples were measured. The main explosion characteristics are as follows: $P_{max}$, MIE and MIT of loxoprofen acid having $5.31^{\circ}C$ of median diameter are obtained 8.4 bar, 1 mJ < MIE < 3 mJ and $550^{\circ}C$. $P_{max}$, MIE and MIT of camphorsulfonate having $95.63^{\circ}C$ of median diameter are obtained 7.9 bar, 30 mJ < MIE < 100 mJ and $510^{\circ}C$. $P_{max}$, MIE and MIT of rifampicine having $26.48^{\circ}C$ of median diameter are obtained 7.9 bar and 1 mJ < MIE < 3 mJ and $470^{\circ}C$. The deflagration index ($K_{st}$) and the explosion index (EI) were obtained by using these data. The explosion hazard assessment of pharmaceutical raw materials dust was compared and examined. As a result, the explosion hazard assessment according to deflagration index and explosion index were the explosion class with St 2 and the explosion hazard rating of severe for loxoprofen acid & rifampicine and St 1 and strong for clopidogrel camphorsulfonate, respectively.

Bioequivalence Test of Triflusal Capsules (트리플루살 캅셀의 생물학적 동등성 평가)

  • 박정숙;이미경;박경미;김진기;임수정;최성희;민경아;김종국
    • Biomolecules & Therapeutics
    • /
    • v.9 no.4
    • /
    • pp.291-297
    • /
    • 2001
  • The bioequivalence of two triflusal products was evaluated with 20 healthy volunteers following single oral dose according to the guidelines of Korea Food and Drug Administration (KFDA). Trisa $l^{R}$ capsule (Whanin Pharm. Corp., Korea) and Disgre $n^{R}$ capsule (Myung-In Pharm. Corp., Korea) were used as test product and reference product, respectively. Both products contain 300 mg of trifusal. One capsule of test product or reference product was orally administered to the volunteers, respectively, by randomized two period crossover study (2$\times$2 Latin square method). Blood samples were taken at predetermined time intervals for 4 hours and the determination of trifusal was accomplished using semi-microbore HPLC equipped with automated column switching system. The analytical method with HPLC was validated according to the Bioanalytic Method Validation guideline by F7A prior to determining the plasma samples. The pharmacokinetic parameters (AU $C_{0-4h}$ $C_{max}$ and $T_{max}$) were calculated and ANOVA test was utilized for statistical analysis of parameters. As a result of the assay validation, the limit of quantification of trifusal in human plasma by current assay procedure was 50 ng/ml using 500 $\mu$l of plasma. The accuracy of the assay was from 97.76% to 116.51% while the intra-day and inter-day coefficient of variation of the same concentration range was less than 15%. Average drug concentration at the designated time intervals and pharmacokinetic parameters calculated were not significantly different between two products (p>0.05). The difference of mean AU $C_{olongrightarrow4hr}$, $C_{max}$, and $T_{max}$ between the two products (2.92, 4.39, and -2.44%, respectively) were less than 20%. The power (1-$\beta$) and treatment difference ($\Delta$) for AU $C_{olongrightarrow4hr}$ and $C_{max}$ were more than 0.8 and less than 0.2, respectively. Although the power for $T_{max}$ was under 0.8, $T_{max}$ of the two products was not significantly different from each other (p>0.05). These results satisfied the criteria of KFDA guideline for bioequivalence, indicating the two products of triflusal were bioequivalent.quivalent.ent.ent.

  • PDF

Synthesis and Properties of Oligomers Containing 3-Triethylsilyl-1-silacyclopent-3-ene and Borane Derivatives via Polyaddition Reaction

  • Lee, Jung-Hwan;Park, Young-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.889-894
    • /
    • 2004
  • Polyaddition reactions of 1,1-diethynyl-3-triethylsilyl-1-silacyclopent-3-ene with several organoborane derivatives have afforded the oligomeric materials containing organosilacyclic group and organoboron moiety along the oligomer main chains. All of these materials are soluble in THF as well as chloroform, and their molecular weights are in the range of 1,990/1,190-21,950/7,050 ($M_w/M_n$) with the polydispersity indexes of 1.67-3.43. The prepared oligomers are characterized by several spectroscopic methods such as $^1H,\;^{13}C, \;^{29}Si,\;^{11}B$ NMR and FTIR spectra along with elemental analysis. FTIR spectra of all the oligomers show that the new strong C=C stretching frequencies appear at 1599-1712 $cm^{-1}$, in particular. The UV-vis absorption spectra of the materials in THF solution exhibit the strong absorption bands at the ${\lambda}_{max}$ of 268-275 nm. The oligomeric materials show that the strong excitation peaks appear at the ${\lambda}_{max}$ of 255-279 nm and the strong fluorescence emission bands at the ${\lambda}_{max}$ of 306-370 nm. All the spectroscopic data suggest that the obtained materials contain both the organoboron ${\pi}$-conjugation moiety of C=C-B-C=C and the organosilacyclic group of 3-triethylsilyl-1-silacyclopent-3-ene along the oligomer main chains. The oligomers are thermally stable up to 162-200 $^{\circ}C$ under nitrogen.

Influence of CT Reconstruction on Spatial Resolution (CT 영상 재구성의 공간분해능에 대한 영향)

  • Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.85-91
    • /
    • 2018
  • Computed tomography, which obtains section images from reconstruction process using projection images, has been applied to various fields. The spatial resolution of the reconstructed image depends on the device used in CT system, the object, and the reconstruction process. In this paper, we investigates the effect of the number of projection images and the pixel size of the detector on the spatial resolution of the reconstructed image under the parallel beam geometry. The reconstruction program was written in Visual C++, and the matrix size of the reconstructed image was $512{\times}512$. The numerical bar phantom was constructed and the Min-Max method was introduced to evaluate the spatial resolution on the reconstructed image. When the number of projections used in reconstruction process was small, artifact like streak appeared and Min-Max was also low. The Min-Max showed upper saturation when the number of projections is increased. If the pixel size of the detector is reduced to 50% of the pixel size of the reconstructed image, the reconstructed image was perfectly recovered as the original phantom and the Min-Max decreased as increasing the detector pixel size. This study will be useful in determining the detector and the accuracy of rotation stage needed to achieve the spatial resolution required in the CT system.

Oxidation Stability Model of Fish Oil (어유의 산화안정성 예측)

  • Jeong-Hwa Hong;Jin-Woo Kim;Dae-Seok Byun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.384-388
    • /
    • 1995
  • High content of polyunsaturated fatty acid in fish oil makes it very susceptible to oxidation, which prevent fish oil from successful application to food processing or functional foods. To resolve this problem, oxidation stability model of fish oil was developed using the following differential equation : $dp/dt=k{\cdot}p(t){\cdot}[P_{max}\;-\;p(t)]$. This differential equation can be intergrated using analytical techniques to give : $p(t)=P_{max}/[1\;+\;[(P_{max}/P_{(0)})\;-\;-1]{\cdot}EXP(-K_p{\cdot}t)]$. At 50, 60, 70 and $80^{\circ}C,\;K_p$ were 0.00535, 0.01345, 0.02516 and 0.04675, respectively. The proposed model was well agreed with the measured data except for some minor deviations. In addition, $K_p$ was expressed as a function of temperature : $K_p=(1/P_{max})EXP\;[1\;-\;(8148/T)+20.1]$. Where T is absolute temperature($^{o}K$).

  • PDF

Analysis of Variation for Parallel Test between Reagent Lots in in-vitro Laboratory of Nuclear Medicine Department (핵의학 체외검사실에서 시약 lot간 parallel test 시 변이 분석)

  • Chae, Hong Joo;Cheon, Jun Hong;Lee, Sun Ho;Yoo, So Yeon;Yoo, Seon Hee;Park, Ji Hye;Lim, Soo Yeon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.2
    • /
    • pp.51-58
    • /
    • 2019
  • Purpose In in-vitro laboratories of nuclear medicine department, when the reagent lot or reagent lot changes Comparability test or parallel test is performed to determine whether the results between lots are reliable. The most commonly used standard domestic laboratories is to obtain %difference from the difference in results between two lots of reagents, and then many laboratories are set the standard to less than 20% at low concentrations and less than 10% at medium and high concentrations. If the range is deviated from the standard, the test is considered failed and it is repeated until the result falls within the standard range. In this study, several tests are selected that are performed in nuclear medicine in-vitro laboratories to analyze parallel test results and to establish criteria for customized percent difference for each test. Materials and Methods From January to November 2018, the result of parallel test for reagent lot change is analyzed for 7 items including thyroid-stimulating hormone (TSH), free thyroxine (FT4), carcinoembryonic antigen (CEA), CA-125, prostate-specific antigen (PSA), HBs-Ab and Insulin. The RIA-MAT 280 system which adopted the principle of IRMA is used for TSH, FT4, CEA, CA-125 and PSA. TECAN automated dispensing equipment and GAMMA-10 is used to measure insulin test. For the test of HBs-Ab, HAMILTON automated dispensing equipment and Cobra Gamma ray measuring instrument are used. Separate reagent, customized calibrator and quality control materials are used in this experiment. Results 1. TSH [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(low concentration) [14.8 / 4.4 / 3.7 / 0.0 ] C-2(middle concentration) [10.1 / 4.2 / 3.7 / 0.0] 2. FT4 [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(low concentration) [10.0 / 4.2 / 3.9 / 0.0] C-2(high concentration) [9.6 / 3.3 / 3.1 / 0.0 ] 3. CA-125 [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(middle concentration) [9.6 / 4.3 / 4.3 / 0.3] C-2(high concentration) [6.5 / 3.5 / 4.3 / 0.4] 4. CEA [%diffrence Max / Mean / median] (P-value by t-test > 0.05) C-1(low concentration) [9.8 / 4.2 / 3.0 / 0.0] C-2(middle concentration) [8.7 / 3.7 / 2.3 / 0.3] 5. PSA [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(low concentration) [15.4 / 7.6 / 8.2 / 0.0] C-2(middle concentration) [8.8 / 4.5 / 4.8 / 0.9] 6. HBs-Ab [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(middle concentration) [9.6 / 3.7 / 2.7 / 0.2] C-2(high concentration) [8.9 / 4.1 / 3.6 / 0.3] 7. Insulin [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(middle concentration) [8.7 / 3.1 / 2.4 / 0.9] C-2(high concentration) [8.3 / 3.2 / 1.5 / 0.1] In some low concentration measurements, the percent difference is found above 10 to nearly 15 percent in result of target value calculated at a lower concentration. In addition, when the value is measured after Standard level 6, which is the highest value of reagents in the dispensing sequence, the result would have been affected by a hook effect. Overall, there was no significant difference in lot change of quality control material (p-value>0.05). Conclusion Variations between reagent lots are not large in immunoradiometric assays. It is likely that this is due to the selection of items that have relatively high detection rate in the immunoradiometric method and several remeasurements. In most test results, the difference was less than 10 percent, which was within the standard range. TSH control level 1 and PSA control level 1, which have low concentration target value, exceeded 10 percent more than twice, but it did not result in a value that was near 20 percent. As a result, it is required to perform a longer period of observation for more homogenized average results and to obtain laboratory-specific acceptance criteria for each item. Also, it is advised to study observations considering various variables.

Bioequivalence of Loxoprofen Tablets (록소프로펜 정의 생물학적 동등성 평가)

  • Kim, Sue-Jin;Oh, In-Joon;Shin, Sang-Chul;Lee, Yong-Bok;Joh, Haeng-Nam;Suh, Soon-Pal
    • Korean Journal of Clinical Pharmacy
    • /
    • v.7 no.2
    • /
    • pp.73-80
    • /
    • 1997
  • The bioequivalence of two loxoprofen tablets between the $Loxonin^{TM}$ (Dong Hwa Pharmaceutical Co., Ltd.) and the $Lokpen^{TM}$ (Dong Il Pharmaceutical Co., Ltd.) was evaluated. 12 normal male volunteers (age $21\sim27$ years old) were divided into two groups and a randomized cross-over study was employed. After one tablet containing 60 mg of loxoprofen sodium anhydrous was orally administered, blood was taken at predetermined time intervals and the concentration of loxoprofen in serum was determined with an HPLC method using UV/VIS detector. The pharmacokinetic parameters ($C_{max},\;T_{max}$, and $AUC_t$) were calculated and ANOVA was utilized for the statistical analysis of parameters. The results showed that the differences in $C_{max},\;T_{max}$, and $AUC_t$ between two tablets were $1.13\%,\;0\%,\;and\;0.69\%$, respectively The powers (1-${\beta}$) for $C_{max},\;T_{max}$, and $AUC_t$ were $84.88\%,\;88.61\%,\;and\;84.81\%$, respectively Detectable differences ($\delta$) and confidence intervals were all less than $20\%$. All of these parameters met the criteria of KFDA for bioequivalence, indicating that $Lokpen^{TM}$ tablet is bioequivalent to $Loxonin^{TM}$ tablet.

  • PDF

Bioequivalence of Sinil Atenolol Tablets to Tenormin Tablets (Atenolol 50 mg) (테놀민 정(아테놀올 50 mg)에 대한 신일아테놀올 정의 생물학적 동등성)

  • Gwak, Hye-Sun;Kang, Sung-Ha;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.1
    • /
    • pp.51-53
    • /
    • 2003
  • This study was conducted to compare the bioavailability of a generic product of Sinil Atenolol Tablets (Sinil Pharmaceutical Co., Ltd., Korea) with the innovator product, $Tenormin^{\circledR}$ Tablets in 20 healthy Korean volunteers. The volunteers received a single 50 mg dose of each atenolol formulation according to a randomized, two-way crossover design. Plasma samples were obtained over a 24-hour interval, and atenolol concentrations were determined by HPLC with a fluorescence detector. From the plasma atenolol concentration vs time curves, the following parameters were compared: area under the plasma concentration-time curve (AUC), peak plasma concentration $(C_{max})$, time to reach peak plasma concentration $(T_{max})$, and terminal first order elimination half-life $(t_{1/2})$. No statistically significant difference was obtained between the $T_{max}$ values, and the logarithmic transformed AUC and $C_{max}$ values of the two products. The 90% confidence for the ratio of the logarithmically transformed AUC and $C_{max}$ values of Sinil Atenolol Tablets over those of $Tenormin^{\circledR}$ Tablets were calculated to be between 0.99 and 1.07, and 1.04 and 1.16, respectively; both were within the bioequivalence limit of 0.80-1.25. The mean of $T_{max}$ in $Tenormin^{\circledR}$ Tablet group was 3.68 hour, and that in Sinil Atenolol Tablet group was 3.65 hour. The values of $t_{1/2}$ between the two products were found comparable, and the mean $t_{1/2}$ values of $Tenormin^{\circledR}$ Tablets and Sinil Atenolol Tablets were 5.9 and 6.0 hour, respectively. Based on these results, it was concluded that Sinil Atenolol Tablets were comparable to $Tenormin^{\circledR}$ Tablets in both the rate and extent of absorption, indicating that Sinil Atenolol Tablets were bioequivalent to the reference product, $Tenormin^{\circledR}$ Tablets