• 제목/요약/키워드: $CU(InGa)Se_2$film

검색결과 152건 처리시간 0.033초

Growth and characterization of $Cu_2ZnSnSe_4$ (CZTSe) thin films by sputtering of binary selenides and selenization

  • Munir, Rahim;Jung, Gwang-Sun;Ahn, Byung-Tae
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.98.2-98.2
    • /
    • 2012
  • Thin film solar cells are growing up in the market due to their high efficiency and low cost. Especially CdTe and $CuInGaSe_2$ based solar cells are leading the other cells, but due to the limited percentage of the elements present in our earth's crust like Tellurium, Indium and Gallium, the price of the solar cells will increase rapidly. Copper Zinc Tin Sulfide (CZTS) and Copper Zinc Tin Selenide (CZTSe) semiconductor (having a kesterite crystal structure) are getting attention for its solar cell application as the absorber layer. CZTS and CZTSe have almost the same crystal structure with more environmentally friendly elements. Various authors have reported growth and characterization of CZTSe films and solar cells with efficiencies about 3.2% to 8.9%. In this study, a novel method to prepare CZTSe has been proposed based on selenization of stacked Copper Selenide ($Cu_2Se$), Tin Selenide ($SnSe_2$) and Zinc Selenide (Zinc Selenide) in six possible stacking combinations. Depositions were carried out through RF magnetron sputtering. Selenization of all the samples was performed in Close Space Sublimation (CSS) in vacuum at different temperatures for three minutes. Characterization of each sample has been performed in Field Emission SEM, XRD, Raman spectroscopy, EDS and Auger. In this study, the properties and results of $Cu_2ZnSnSe_4$ thin films grown by selenization will be presented.

  • PDF

Structural and Optical Properties of Copper Indium Gallium Selenide Thin Films Prepared by RF Magnetron Sputtering

  • Kong, Seon-Mi;Fan, Rong;Kim, Dong-Chan;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.158-158
    • /
    • 2011
  • $Cu(In_xGa_{1-x})Se_2$ (CIGS) thin film solar cell is one of the most promising solar cells in photovoltaic devices. CIGS has a direct band gap which varied from 1.0 to 1.26 eV, depending on the Ga to In ratio. Also, CIGS has been studying for an absorber in thin film solar cells due to their highest absorption coefficient which is $1{\times}10^5cm^{-1}$ and good stability for deposition process at high temperature of $450{\sim}590^{\circ}C$. Currently, the highest efficiency of CIGS thin film solar cell is approximately 20.3%, which is closely approaching to the efficiency of poly-silicon solar cell. The deposition technique is one of the most important points in preparing CIGS thin film solar cells. Among the various deposition techniques, the sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have been prepared by rf magnetron sputtering method using a single target. The optical and structural properties of CIGS films are generally dependent on deposition parameters. Therefore, we will explore the influence of deposition power on the properties of CIGS films and the films will be deposited by rf magnetron sputtering using CIGS single target on Mo coated soda lime glass at $500^{\circ}C$. The thickness of CIGS films will be measured by Tencor-P1 profiler. The optical properties will be measured by UV-visible spectroscopy. The crystal structure will be analyzed using X-ray diffraction (XRD). Finally the optimal deposition conditions for CIGS thin films will be developed.

  • PDF

결정질 실리콘 및 CuInxGa(1-x)Se2 모듈의 부분음영에 따른 태양전지 특성 변화 및 바이패스 다이오드의 작동 메커니즘 분석 (Analysis of Mechanism for Photovoltaic Properties and Bypass Diode of Crystalline Silicon and CuInxGa(1-x)Se2 Module in Partial Shading Effect)

  • 이지은;배수현;오원욱;강윤묵;김동환;이해석
    • 한국재료학회지
    • /
    • 제25권4호
    • /
    • pp.196-201
    • /
    • 2015
  • This paper presents the impact of partial shading on $CuIn_xGa_{(1-x)}Se_2(CIGS)$ photovoltaic(PV) modules with bypass diodes. When the CIGS PV modules were partially shaded, the modules were under conditions of partial reverse bias. We investigated the characterization of the bypass diode and solar cell properties of the CIGS PV modules when these was partially shaded, comparing the results with those for a crystalline silicon module. In crystalline silicon modules, the bypass diode was operated at a partial shade modules of 1.67 % shading. This protected the crystalline silicon module from hot spot damage. In CIGS thin film modules, on the other hand, the bypass diode was not operated before 20 % shading. This caused damage because of hotspots, which occurred as wormlike defects in the CIGS thin film module. Moreover, the bypass diode adapted to the CIGS thin film module was operated fully at 60% shading, while the CIGS thin film module was not operated under these conditions. It is known that the bypass diode adapted to the CIGS thin film module operated more slowly than that of the crystalline silicon module; this bypass diode also failed to protect the module from damage. This was because of the reverse saturation current of the CIGS thin film, $1.99{\times}10^{-5}A/cm^2$, which was higher than that of crystalline silicon, $8.11{\times}10^{-7}A/cm^2$.

CIGS 태양전지의 윈도우 층에 적용되는 ZnO 박막 특성에 관한 온도의 영향 (Effect of Temperature on the Characteristics of ZnO Thin Film Applied to the Window Layer of CIGS Solar Cells)

  • 정경서;권상직;조의식
    • 한국전기전자재료학회논문지
    • /
    • 제26권4호
    • /
    • pp.304-308
    • /
    • 2013
  • For the application to the window layer of $Cu(In,Ga)Se_2$(CIGS) solar cell, zinc oxide(ZnO) thin film was deposited at various temperatures by in-line pulsed DC sputtering. From the structural, optical, and electrical investigation and analysis, it was possible to obtain the lower thickness, the lower resistivity, and the higher transmittance at a higher process temperature. The energy band gap of ZnO was calculated using the transmittance data and was analyzed in terms of the dependency on temperature. From the X-ray diffraction(XRD) results, it was possible to conclude that a dominant peak was found about $34.2{\sim}34.6^{\circ}$(111) and crystallinity was obtained at a temperature above $150^{\circ}C$.

Hot Wall Epitaxy (HWE)에 의한 $CdGa_2Se_4$ 단결정 박막 성장과 특성 (Growth and Characterization of $CdGa_2Se_4$ Single Crystal Thin Films by Hot Wall Epitaxy)

  • 최승평;홍광준
    • 센서학회지
    • /
    • 제10권6호
    • /
    • pp.328-337
    • /
    • 2001
  • 수평 전기로에서 $CdGa_2Se_4$ 다결정을 합성하여 HWE 방법으로 $CdGa_2Se_4$ 단결정 박막을 반절연성 GaAs(100) 위에 성장하였다. $CdGa_2Se_4$ 단결정 박막은 증발원과 기판의 온도를 각각 $630^{\circ}C$, $420^{\circ}C$로 성장하였다. 10K에서 측정한 광발광 exciton 스펙트럼과 이중결정 X-선 요동곡선(DCRC)의 반치폭(FWHM)을 분석하여 단결정 박막의 최적 성장 조건을 얻었다. Hall 효과는 van der Pauw 방법에 의해 측정되었으며, 온도에 의존하는 운반자 농도와 이동도는 293K에서 각각 $8.27{\times}10^{17}/cm^3$, $345\;cm^2/V{\cdot}s$였다. 광전류 봉우리의 10K에서 단파장대의 가전자대 갈라짐(splitting)에 의해서 측정된 ${\Delta}Cr$ (crystal field splitting)은 106.5 meV, ${\Delta}So$ (spin orbit splitting)는 418.9 meV였다. 10K의 광발광 측정으로부터 고품질의 결정에서 볼 수 있는 free exciton 과 매우 강한 세기의 중성 주개 bound exciton등의 피크가 관찰되었다. 이때 중성 주개 bound exciton의 반치폭과 결합 에너지는 각각 8 meV와 13.7 meV였다. 또한 Haynes rule에 의해 구한 불순물의 활성화 에너지는 137 meV 였다.

  • PDF

Sputtered Al-Doped ZnO Layers for Cu2ZnSnS4 Thin Film Solar Cells

  • Lee, Kee Doo;Oh, Lee Seul;Seo, Se-Won;Kim, Dong Hwan;Kim, Jin Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.688-688
    • /
    • 2013
  • Al-doped ZnO (AZO) thin films have attracted a lot of attention as a cheap transparent conducting oxide (TCO) material that can replace the expensive Sn-doped In2O3. In particular, AZO thin films are widely used as a window layer of chalcogenide-based thin film solar cells such as Cu(In,Ga)Se2 and Cu2ZnSnS4 (CZTS). Mostly important requirements for the window layer material of the thin film solar cells are the high transparency and the low sheet resistance, because they influence the light absorption by the activelayer and the electron collection from the active layer, respectively. In this study, we prepared the AZO thin films by RF magnetron sputtering using a ZnO/Al2O3 (98:2wt%) ceramic target, and the effect of the sputtering condition such as the working pressure, RF power, and the working distance on the optical, electrical, and crystallographic properties of the AZO thin films was investigated. The AZO thin films with optimized properties were used as a window layer of CZTS thin film solar cells. The CZTS active layers were prepared by the electrochemical deposition and the subsequent sulfurization process, which is also one of the cost-effective synthetic approaches. In addition, the solar cell properties of the CZTS thin film solar cells, such as the photocurrent density-voltage (J-V) characteristics and the external quantum efficiency (EQE) were investigated.

  • PDF

비진공법 CuInSe2 태양전지에서 MoSe2의 생성을 억제하기 위한 산화 몰리브데늄 확산장벽 층 (Molybdenum Oxides as Diffusion Barrier Layers against MoSe2 Formation in A Nonvacuum Process for CuInSe2 Solar Cells)

  • 이병석;이도권
    • Current Photovoltaic Research
    • /
    • 제3권3호
    • /
    • pp.85-90
    • /
    • 2015
  • Two-step processes for preparing $Cu(In,Ga)Se_2$ absorber layers consist of precursor layer formation and subsequent annealing in a Se-containing atmosphere. Among the various deposition methods for precursor layer, the nonvacuum (wet) processes have been spotlighted as alternatives to vacuum-based methods due to their potential to realize low-cost, scalable PV devices. However, due to its porous nature, the precursor layer deposited on Mo substrate by nonvacuum methods often suffers from thick $MoSe_2$ formation during selenization under a high Se vapor pressure. On the contrary, selenization under a low Se pressure to avoid $MoSe_2$ formation typically leads to low crystal quality of absorber films. Although TiN has been reported as a diffusion barrier against Se, the additional sputtering to deposit TiN layer may induce the complexity of fabrication process and nullify the advantages of nonvacuum deposition of absorber film. In this work, Mo oxide layers via thermal oxidation of Mo substrate have been explored as an alternative diffusion barrier. The morphology and phase evolution was examined as a function of oxidation temperature. The resulting Mo/Mo oxides double layers were employed as a back contact electrode for $CuInSe_2$ solar cells and were found to effectively suppress the formation of $MoSe_2$ layer.

진공증발원 시스템을 이용한 CIGS 박막의 특성평가에 관한 연구 (Properties of CIGS thin film developed with evaporation system)

  • 김은도;정예슬;정다운;엄기석;황도원;조성진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.85.1-85.1
    • /
    • 2010
  • $Cu(In,Ga)Se_2$ (CIGS) thin film solar cell is currently 19.5% higher efficiency and developing a large area technology. The structure of CIGS solar cell that make five unit layers as back contact, light absorption, buffer, front transparent conducting electrode and antireflection to make them sequentially forming. Materials and various compositions of thin film unit which also manufacture a variety method used by the physical and chemical method for CIGS solar cell. The construction and performance test of evaporator for CIGS thin film solar cell has been done. The vapor pressures were changed by using vapor flux meter. The vapor pressure were copper (Cu) $2.1{\times}10^{-7}{\sim}3.0{\times}10^{-7}$ Torr, indium (In) $8.0{\times}10^{-7}{\sim}9.0{\times}10^{-7}$ Torr, gallium (Ga) $1.4{\times}10^{-7}{\sim}2.8{\times}10^{-7}$ Torr, and selenium (Se) $2.1{\times}10^{-6}{\sim}3.2{\times}10^{-6}$ Torr, respectively. The characteristics of the CIGS thin film was investigated by using X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and photoluminescence (PL) spectroscopy using a He-Ne laser. In PL spectrum, temperature dependencies of PL spectra were measured at 1137 nm wavelength.

  • PDF

Cu2ZnSn(S,Se)4(CZTSSe) 흡수층의 급속 열처리 공정 온도 미세 조절을 통한 특성 향상 (Improvement in Performance of Cu2ZnSn(S,Se)4 Absorber Layer with Fine Temperature Control in Rapid Thermal Annealing System)

  • 김동명;장준성;비제이 가라데;김진혁
    • 한국재료학회지
    • /
    • 제31권11호
    • /
    • pp.619-625
    • /
    • 2021
  • Cu2ZnSn(S,Se)4 (CZTSSe) based thin-film solar cells have attracted growing attention because of their earth-abundant and non-toxic elements. However, because of their large open-circuit voltage (Voc)-deficit, CZTSSe solar cells exhibit poor device performance compared to well-established Cu(In,Ga)(S,Se)2 (CIGS) and CdTe based solar cells. One of the main causes of this large Voc-deficit is poor absorber properties for example, high band tailing properties, defects, secondary phases, carrier recombination, etc. In particular, the fabrication of absorbers using physical methods results in poor surface morphology, such as pin-holes and voids. To overcome this problem and form large and homogeneous CZTSSe grains, CZTSSe based absorber layers are prepared by a sputtering technique with different RTA conditions. The temperature is varied from 510 ℃ to 540 ℃ during the rapid thermal annealing (RTA) process. Further, CZTSSe thin films are examined with X-ray diffraction, X-ray fluorescence, Raman spectroscopy, IPCE, Energy dispersive spectroscopy and Scanning electron microscopy techniques. The present work shows that Cu-based secondary phase formation can be suppressed in the CZTSSe absorber layer at an optimum RTA condition.

18% 효율 Cu(In,Ga)Se2 박막태양전지용 ZnSnO 버퍼층의 원자층 증착법 및 분석 (Characterization of Atomic-Layer Deposited ZnSnO Buffer Layer for 18%- Efficiency Cu(In,Ga)Se2 Solar Cells)

  • 김선철;김승태;안병태
    • Current Photovoltaic Research
    • /
    • 제3권2호
    • /
    • pp.54-60
    • /
    • 2015
  • ZnSnO thin films were deposited by atomic layer deposition (ALD) process using diethyl zinc ($Zn(C_2H_5)_2$) and tetrakis (dimethylamino) tin ($Sn(C_2H_6N)_4$) as metal precursors and water vapor as a reactant. ALD process has several advantages over other deposition methods such as precise thickness control, good conformality, and good uniformity for large area. The composition of ZnSnO thin films was controlled by varying the ratio of ZnO and $SnO_2$ ALD cycles. The ALD ZnSnO film was an amorphous state. The band gap of ZnSnO thin films increased as the Sn content increased. The CIGS solar cell using ZnSnO buffer layer showed about 18% energy conversion efficiency. With such a high efficiency with the ALD ZnSnO buffer and no light soaking effect, AlD ZnSnO buffer mighty be a good candidate to replace Zn(S,O) buffer in CIGSsolar cells.