• Title/Summary/Keyword: $CO_2$Gas

Search Result 4,994, Processing Time 0.034 seconds

Low NOx MILD Combustion for Sawdust Fuel (폐목 톱밥 연료의 저NOx MILD연소)

  • Shim, Sung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.153-156
    • /
    • 2008
  • MILD combustion has been successfully applied to gaseous fuels and few commercial systems are now in operation. Extending MILD combustion applicability to solid fuel of sawdust is the focus of the present work. The MILD combustion furnace at the University of Adelaide in Australia was used in this study. A measurement of $O_2$ and CO emissions have been carried out in parallel with consideration of NOx emission and compared in each modes of conventional natural gas combustion, natural gas MILD combustion, NOx emission in natural gas MILD combustion mode can be reduced to 20% in comparison with conventional combustion. Emission in cases of air carrying sawdust combustion and $CO_2$ carrying sawdust combustion were also compared. Air and $CO_2$ were sued as a carry gas for the sawdust. It was found that MILD conditions are possible for sawdust particles of less than $355{\mu}m$ without additional air pre-heating. It was also found that when using $CO_2$ as the carry gas the flame inside the furnace was not visible anymore and that NOx emission dropped to less than two folds.

  • PDF

Minimization of Energy Consumption for Amine Based CO2 Capture Process by Process Modification

  • Sultan, Haider;Bhatti, Umair H.;Cho, Jin Soo;Park, Sung Youl;Baek, Il Hyun;Nam, Sungchan
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.13-18
    • /
    • 2019
  • The high energy penalty in amine-based post-combustion CO2 capture process is hampering its industrial scale application. An advanced process is designed by intensive heat integration within the conventional process to reduce the stripper duty. The study presents the technical feasibility for stripper duty reduction by intensive heat integration in CO2 capture process. A rigorous rate-based model has been used in Aspen Plus® to simulate conventional and advanced process for a 300 MW coal-based power plant. Several design and operational parameters like split ratio, stripper inter-heater location and flowrate were studied to find the optimum values. The results show that advanced configuration with heat integration can reduces the stripper heat by 14%.

Analysis on Dynamic Ductile Fracture of Transportation Pipeline for Carbon Dioxide Capture and Storage System (CO2 배관의 연속연성파괴 분석)

  • Jeong, Hyo-Tae;Choe, Byung-Hak;Kim, Woo-Sik;Baek, Jong-Hyeon
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.13-19
    • /
    • 2014
  • Dynamic ductile fracture (DDF) has been studied in the transportation pipeline for the carbon dioxide capture and storage(CCS) system. DDF behavior of CCS transportation pipeline has been analyzed using Battelle Two Curve Method (BTCM) and compared with the DDF behavior of natural gas pipeline. The operating safety criteria against the DDF has been investigated based on the sensitivity analyses of the pipe thickness and the operating temperature for the $CO_2$ pipeline. The DDF criteria can be applied to confirm the operating safety of the $CO_2$ pipeline. If the commercial natural gas pipeline were used at room temperature as a $CO_2$ pipeline, the thickness of pipe should be at least 7mm and the pressure should be less than 54bar for the $CO_2$ pipeline system.

Surgical Outcomes of Pneumatic Compression Using Carbon Dioxide Gas in Thoracoscopic Diaphragmatic Plication

  • Ahn, Hyo Yeong;Kim, Yeong Dae;I, Hoseok;Cho, Jeong Su;Lee, Jonggeun;Son, Joohyung
    • Journal of Chest Surgery
    • /
    • v.49 no.6
    • /
    • pp.456-460
    • /
    • 2016
  • Background: Surgical correction needs to be considered when diaphragm eventration leads to impaired ventilation and respiratory muscle fatigue. Plication to sufficiently tense the diaphragm by VATS is not as easy to achieve as plication by open surgery. We used pneumatic compression with carbon dioxide ($CO_2$) gas in thoracoscopic diaphragmatic plication and evaluated feasibility and efficacy. Methods: Eleven patients underwent thoracoscopic diaphragmatic plication between January 2008 and December 2013 in Pusan National University Hospital. Medical records were retrospectively reviewed, and compared between the group using $CO_2$ gas and group without using $CO_2$ gas, for operative time, plication technique, duration of hospital stay, postoperative chest tube drainage, pulmonary spirometry, dyspnea score pre- and postoperation, and postoperative recurrence. Results: The improvement of forced expiratory volume at 1 second in the group using $CO_2$ gas and the group not using $CO_2$ gas was $22.46{\pm}11.27$ and $21.08{\pm}5.39$ (p=0.84). The improvement of forced vital capacity 3 months after surgery was $16.74{\pm}10.18$ (with $CO_2$) and $15.6{\pm}0.89$ (without $CO_2$) (p=0.03). During follow-up ($17{\pm}17$ months), there was no dehiscence in plication site and relapse. No complications or hospital mortalities occurred. Conclusion: Thoracoscopic plication under single lung ventilation using $CO_2$ insufflation could be an effective, safe option to flatten the diaphragm.

Conversion of $CO_2$ and $CH_4$ to Syngas by Making Use of Microwave Plasma Torch (전자파 플라즈마 토치를 이용한 이산화탄소와 메탄의 Syngas 합성)

  • Dong Hun, Shin;Yong Cheol, Hong;Han Sup, Uhm
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2004.11a
    • /
    • pp.195-200
    • /
    • 2004
  • Carbon dioxide ($CO_2$) and methane (CH$_4$) are two major greenhouse Bases. $CO_2$is a stack gas of many industrial processes and the main product of the hydrocarbon combustion. There is recent research interest on the synthesis gas (syngas) formation from $CO_2$ and CH$_4$, via the following reaction: CH$_4$+$CO_2$longrightarrow 2H$_2$+$CO_2$, in order to reduce the greenhouse effects and to synthesize various chemicals, Preliminary experiments were conducted on the conversion of $CO_2$ and CH$_4$ to syngas by making use of a microwave plasma torch at atmospheric pressure. Conversion rates of $CO_2$and CH$_4$ to hydrogen (H$_2$), carbon monoxide (CO) and higher hydrocarbons were investigated using Gas Chromatography (GC) and Fourier Transform Infrared (FTIR). The experimental data indicate that the main products were H$_2$, CO and small amount of higher hydrocarbons, such as ethylene (C$_2$H$_4$).

  • PDF

Selecting of Earth-work Equipment Combination Considered CO2 Emission (이산화탄소 배출량을 고려한 토공 장비조합의 선정)

  • Kim, Byung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1750-1756
    • /
    • 2011
  • After Kyoto Protocol was adopted for green gas reduction, each nations are stepping up efforts to reduce $CO_2$ of a typical green gas. Construction industry also is trying $CO_2$ reduction with the techniques of two types which are software and hardware techniques. The software technique are Passive Design considered green gas emission and the environment impact assessment by LCA. The hardware techniques are adjustment of equipment system and development of eco- friendly material. But, it is nonexistent that a study related to $CO_2$ emission considered detail process in construction industry. This study analyzed the relativeness of equipment combination and $CO_2$ emission by calculate $CO_2$ emission follow to equipment combination on earth-work which is the process emitted most $CO_2$ among railway bedding construction.

  • PDF

Greenhouse Gas ($CO_2$) Geological Sequestration and Geomechanical Technology Component (온실가스($CO_2$) 지중저장과 암반공학적 기술요소)

  • Kim, Hyung-Mok;Park, Eui-Seob;Synn, Joong-Ho;Park, Yong-Chan
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.175-184
    • /
    • 2008
  • In this study, state-of-the-art of $CO_2$ geological sequestration as a method of greenhouse gas reduction was reviewed. Thermal-Hydraulic-Mechanically(THM) coupled simulation technology and its application to a stability analysis of geological formation due to $CO_2$ injection as well as a leakage path analysis were investigated and introduced.

Catalytic effect of metal oxides on CO2 absorption in an aqueous potassium salt of lysine

  • Dharmalingam, Sivanesan;Park, Ki Tae;Lee, Ju-Yeol;Park, Il-Gun;Jeong, Soon Kwan
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.335-341
    • /
    • 2018
  • We report the catalytic effects of metal oxides on the $CO_2$ absorption rate in an aqueous potassium salt of ${\text\tiny{L}}-lysine-HCl$ using the vapor liquid equilibrium method. The best $CO_2$ absorption rate obtained through testing metal oxides in a highly concentrated potassium salt of amino acids (2.0 M) was identified using CuO. The recyclability of the metal oxides was tested over three cycles. The catalyst CuO was found to enhance the absorption rate of $CO_2$ by 61%. A possible mechanism was proposed based on NMR spectroscopy studies. Further, the effect of change in liquid absorbent viscosity on $CO_2$ absorption is discussed.

A Study on Reforming Reaction for Preparation of Synthesis Gas from Land-Fill Gas (매립지가스(LFG)로부터 합성가스 제조를 위한 개질반응 연구)

  • Cho, Wooksang;Yoon, Jungsup;Park, Sunggyu;Mo, Yongki;Baek, Youngsoon
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.570-576
    • /
    • 2014
  • LFG (Land-Fill Gas) includes components of $CH_4$, $CO_2$, $O_2$, $N_2$, and water. The preparation of synthesis gas from LFG as a DME (Dimethyl Ether) feedstock was studied by methane reforming of $CO_2$, $O_2$ and steam over NiO-MgO-$CeO_2$/$Al_2O_3$ catalyst. Our experiments were performed to investigate the effects of methane conversion and syngas ratio on the amount of LFG components over NiO-MgO-$CeO_2$/$Al_2O_3$ catalyst. Results were obtained through the activity reaction experiments at the temperature of $900^{\circ}C$ and GHSV of 4,000. The results were as following; it has generally shown that methane conversion rate increased with the increase of oxygen and carbon dioxide amounts. Highly methane conversion of 92~93% and syngas ratio of approximately 1.0 were obtained in the feed of gas composition flow-rate of 243ml/min of $CH_4$, 241ml/min of $CO_2$, 195ml/min of $O_2$, 48ml/min of $N_2$, and 360ml/min of water, respectively, under reactor pressure of 15 bar for 50 hrs of reaction time. Also, it was shown that catalyst deactivation by coke formation was reduced by excessively adding oxygen and steam as an oxidizer of the methane reforming.

Gas Separation Membranes - Current Status

  • Puri, Pushpinder S.
    • Membrane Journal
    • /
    • v.6 no.3
    • /
    • pp.117-126
    • /
    • 1996
  • Membrane-based gas separation systems are now widely accepted and employed as unit operation in industrial gas, chemical, and allied industries. Following their successful commercialization in the late seventies to recover hydrogen from ammonia purge gas streams, membrane-based systems have gained acceptance in a wide variety of applications. Numerous systems are in operation today to: recover hydrogen from other purge gas and hydrocarbon streams; adjust the $H_{2}/CO$ ratio in syngas; remove $CO_{2}$ from natural gas; recover helium; dry gas streams; and separate air. Lower cost, ease of operation, operational flexibility and portability are a few of the reasons membrane-based systems are chosen over absorption and cryogenic-based separations in certain applications.

  • PDF