• Title/Summary/Keyword: $CO_2$Emission Costs

Search Result 48, Processing Time 0.021 seconds

Comparison of Construction Costs of Masonry Wall Types, including CO2 Emission Costs (조적벽의 CO2 배출비용을 포함한 건설원가 비교에 관한 연구)

  • Lee, Byung-Yun;Kim, Bo-Ra;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.83-90
    • /
    • 2010
  • The carbon dioxide($CO_2$) emissions that result from construction are one of the main factors causing a global warming problem. It is therefore necessary to make efforts to reduce $CO_2$ emissions in the construction industry. Some researchers have studied $CO_2$ emissions in the industry ; however, there has been a lack of study on $CO_2$ emissions cost. Therefore, in this study, the construction costs, including the $CO_2$ emission cost, of masonry wall type, which is a common brick wall, concrete brick wall, and fired brick wall, were examined. The purpose of this study is to compare the construction costs of masonry wall types, including $CO_2$ emission costs. The study found that the $CO_2$ emission costs were highest for the fired brick wall, followed by the concrete brick wall. This research could provide basic information that can be used in other engineering methods to convert $CO_2$ emissions to $CO_2$ emission cost.

The Analysis CO2 Emission and Economic Efficiency of High-rise Apartment Houses (초고층 공동주택의 CO2 배출량과 경제성 분석에 관한 연구)

  • Roh, Seung-Jun;Tae, Sung-Ho;Kim, Tae-Hyoung;Keum, Won-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.47-48
    • /
    • 2012
  • In this study, the CO2 emission and economic efficiency of high-rise apartment houses were evaluated, and were analyzed as a way to establish database on the evaluation of environment-friendliness of high-rise buildings. To that end, standard of buildings to be evaluated were proposed through analysis of the designing guideline for high-rise apartment houses proposed by Seoul city, and CO2 emission of the subject buildings were evaluated based on the characteristics of materials admitted into each building and the amounts of energy consumed during lifecycle period. In addition, the initial costs in construction stage and annual costs in operation stage were set as analysis parameters, and along with calculation of direct cost by the consumption of construction materials and energy, the costs of CO2 emission were evaluated and analyzed. As a result, the CO2 emission and economic efficiencies of high-rise apartment houses by construction stage and operation stage could be analyzed quantitatively.

  • PDF

The Estimation of $CO_2$ Emission Cost on Roof Waterproofing Types Using Input-Output Table (산업연관표를 이용한 지붕방수공법별 $CO_2$ 배출량 산정)

  • Jung, Young-Chul;Park, Gyu-Tae;Lee, Byung-Yun;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.243-246
    • /
    • 2010
  • Recently, global warming problem is a major issue in international community. The carbon dioxide ($CO_2$) emissions in the construction industry is one of the main factors causing a global warming problem. Accordingly, various researches on $CO_2$ emissions caused by the construction industry is needed and construction methods which is low $CO_2$ emissions should be developed. In this study, $CO_2$emission cost is compared with roof waterproofing types in construction phase. As a result, the $CO_2$ emission costs of asphalt waterproofing is the highest. This research is to provide basic information for selecting appropriate construction methods in aspect of low $CO_2$ emission cost.

  • PDF

Estimation of CO2 Abatement Cost Considering Allocative Inefficiency of Inputs for the Korean Steel Industry: A Cost Function Approach (국내 철강업의 생산요소 간 비효율적 배분을 고려한 CO2 저감비용 산정 및 분석: 비용함수접근법)

  • Lee, Myunghun
    • Environmental and Resource Economics Review
    • /
    • v.23 no.3
    • /
    • pp.453-472
    • /
    • 2014
  • Analyzing the effects of carbon emissions trading, which is scheduled to be introduced in Korea in 2015, requires an accurate assessment of $CO_2$ abatement costs by both industries and firms. Firms faced with regulatory constraints are unlikely to minimize their production costs due to rising production costs caused by allocative inefficiency of inputs. The use of a distance function would results in underestimation of $CO_2$ abatement costs, because it fails to capture the allocative distortion costs. Recognizing the disadvantage of the previous approach, first, this paper tests for allocative efficiency of input for the Korean steel industry over the period 1990-2010, then derives the marginal $CO_2$ abatement costs by applying a cost function approach. The hypothesis of allocative efficiency in inputs is rejected and the steel industry pays an annual average cost of 92,000 won in removing an additional ton of $CO_2$ over the sample period.

Determinants and Effects of Environmental Investments (환경투자활동의 동기와 효과)

  • Yook, Keun-Hyo
    • Journal of Environmental Policy
    • /
    • v.12 no.2
    • /
    • pp.33-57
    • /
    • 2013
  • This paper test the relationship among determinants of environmental investments, level of environmental investments, eco-efficiency (carbon productivity). The results show that profitability, leverage and R&D costs have a negative impact on environmental investments, and controlling ownership have a positive impact on environmental investments as well as environmental protection costs. The analysis also show that firms increasing environmental investments are able to gain superior environmental performance ($CO_2$ emission), but are negatively relationship with financial performance. Finally, the findings prove that differences exist in the relationship between determinants and effect of environmental investments when grouped by industry characteristics.

  • PDF

Environmental awareness and economical profits of replacing gas turbines in gas compressor stations: A case study of Polkalleh station in Iran

  • Sadrnejad, Amin;Noorollahi, Younes;Sadrnejad, Tohid
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.132-139
    • /
    • 2016
  • In early 90s the worldwide awareness about the energy crisis and global warming had been increased and emission reduction (by improving energy efficiency), as well as increasing the capacity of clean and renewable energies, showed themselves as the most important steps towards the sustainable development approach. However, investigations on Iran's environmental situation show huge decline in recent decades and apparently there is no sense of urgency about these issues through the vision of Iranian politicians. In this article the idea of replacing the old gas turbines of Polkalleh natural gas compressor station - as one of the main compressor stations of Iran - with newer and more efficient gas turbines is evaluated, emphatically for reducing greenhouse gases emissions and their environmental costs and decreasing natural gas consumption as well. Clearly such idea is costly, but analyzing its economic impacts, huge declines in annual costs and greenhouse gases emissions can be seen as well. So an investment about $95 million can decrease 40% of Polkalleh compressor station annual costs, 25% of natural consumption and 30% of $CO_2$ and $NO_x$ emissions. Besides the simple payback period of this investment is about 2.5 years from the cut-expenses of annual costs.

Scenario Analysis of Natural Gas Demand for Electricity Generation in Korea (전력수급기본계획의 불확실성과 CO2 배출 목표를 고려한 발전용 천연가스 장기전망과 대책)

  • Park, Jong-Bae;Roh, Jea Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1503-1510
    • /
    • 2014
  • This study organizes scenarios on the power supply plans and electricity load forecasts considering their uncertainties and estimates natural gas quantity for electricity generation, total electricity supply cost and air pollutant emission of each scenario. Also the analysis is performed to check the properness of government's natural gas demand forecast and the possibility of achieving the government's CO2 emission target with the current plan and other scenarios. In result, no scenario satisfies the government's CO2 emission target and the natural gas demand could be doubled to the government's forecast. As under-forecast of natural gas demand has caused the increased natural gas procurement cost, it is required to consider uncertainties of power plant construction plan and electricity demand forecast in forecasting the natural gas demand. In addition, it is found that CO2 emission target could be achieved by enlarging natural gas use and demand-side management without big increase of total costs.

An Analysis on CO2 Emission and Cost Effects of Hydrogen Energy in Sedan Sector (수소에너지의 승용차부문 도입에 따른 CO2 배출 감축 및 비용효과 분석 연구)

  • Hong, Jong-Chul;Kang, Seung-Jin;Choi, Sang-Jin;Park, Sang-Young;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.9-21
    • /
    • 2009
  • As one of the alternative solution for energy and environmental issues such as climate change, energy security, oil price, etc., hydrogen energy has been getting so much attentions these days. This paper analyzed the $CO_2$ emission, costs, and energy consumptions when the hydrogen energy was introduced to transportation, specifically in Sedan sector using the energy system model, MARKAL. As results, 21.5% of $CO_2$ emission in 2040 could be reduced and additional 76 billion dollars will be needed in the high energy price scenario. The amount of energy saving mainly due to the replacement of existing car to hydrogen vehicle was 16% of the final energy consumption in 2040.

Estimation of Atmospheric Pollutant Emissions from Vessels in Major Harbor Cities in Korea and related Social Cost (국내 주요 항구도시의 선박 배기가스 배출량 산정 및 사회적 비용 추정)

  • Choi, Jung-kil;Kim, Myung-won;Lee, Hyo-jin;Kang, Tea-soon;Lee, Kang-wung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.905-917
    • /
    • 2021
  • Atmospheric pollutant emissions, mainly exhaust gas emissions from vessels, and the resultant social costs of pollution in the Korean harbor cities of Incheon, Mokpo, Gwangyang, Busan and Ulsan, are examined in this study, and the need for an emissions reduction plan is highlighted. Busan had several vessels entering its port, while Mokpo had few vessels, yet the vessels emission contribution was high in both the cities. Ulsan had world-class heavy-chemical industries, Gwangyang had steel mills and Incheon had a manufacturing industry and more vessels entering its port than Mokpo, yet the emission contribution was low in these cities. By calculating exhaust gas emissions from the vessels, it was found that CO2 was the highest, followed by NOx and SOx. By vessel type, Busan, Ulsan, and Incheon had more oil tank vessels, Gwangyang had more cargo vessels, and Mokpo had more ferries. As a result of social cost, Busan paid the highest, while the highest emission was PM. The use of low-sulfur oil can directly reduce PM and, SOx emissions and indirectly reduce NOx emissions. However, in order to reduce high CO2 emissions, only low-sulfur oil will not help. Therefore, the study suggested the need for reduction plan that use of fossil fuels, by using alternative maritime power (AMP).

LCOE Assessment of Major Power Generation Technologies Reflecting Social Costs (사회적 비용을 고려한 국내 주요 발전기술의 균등화발전비용 산정)

  • Cho, Young-Tak;Seok, Kwanghoon;Park, Jong-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.179-185
    • /
    • 2018
  • A considerable cost gap between three major power generation technologies, namely nuclear, coal, and combined cycle gas turbine (CCGT), has been a well-established fact in the Korean electricity market. Alternatively, this paper analyzes the levelized costs of electricity (LCOE) of the three technologies reflecting overall social costs of electricity generation including accident risk, $CO_2$ emission, and air pollution damage. The paper unveils to what extent current discriminative subsidies on fuels regarding the social costs, mostly through tax exemptions, affect economic competitiveness of the technologies. In particular, it finds relative positions of coal and CCGT could be altered depending on appreciation level of the social costs. It has limits in analyzing fixed costs of the technologies, however, due to limited data availability of nuclear power, and suggests further studies on the issue.