Objective: This study was conducted to enable on-line prediction of primal and commercial cut weights in Korean slaughter pigs by AutoFom III, which non-invasively scans pig carcasses early after slaughter using ultrasonic sensors. Methods: A total of 162 Landrace, Yorkshire, and Duroc (LYD) pigs and 154 LYD pigs representing the yearly Korean slaughter distribution were included in the calibration and validation dataset, respectively. Partial least squares (PLS) models were developed for prediction of the weight of deboned shoulder blade, shoulder picnic, belly, loin, and ham. In addition, AutoFom III's ability to predict the weight of the commercial cuts of spare rib, jowl, false lean, back rib, diaphragm, and tenderloin was investigated. Each cut was manually prepared by local butchers and then recorded. Results: The cross-validated prediction accuracy ($R^2cv$) of the calibration models for deboned shoulder blade, shoulder picnic, loin, belly, and ham ranged from 0.77 to 0.86. The $R^2cv$ for tenderloin, spare rib, diaphragm, false lean, jowl, and back rib ranged from 0.34 to 0.62. Because the $R^2cv$ of the latter commercial cuts were less than 0.65, AutoFom III was less accurate for the prediction of those cuts. The root mean squares error of cross validation calibration (RMSECV) model was comparable to the root mean squares error of prediction (RMSEP), although the RMSECV was numerically higher than RMSEP for the deboned shoulder blade and belly. Conclusion: AutoFom III predicts the weight of deboned shoulder blade, shoulder picnic, loin, belly, and ham with high accuracy, and is a suitable process analytical tool for sorting pork primals in Korea. However, AutoFom III's prediction of smaller commercial Korean cuts is less accurate, which may be attributed to the lack of anatomical reference points and the lack of a good correlation between the scanned area of the carcass and those traits.