• Title/Summary/Keyword: $CO_2$ recovery

Search Result 845, Processing Time 0.035 seconds

The effect of heat exchanger type for exhaust heat recovery system on diesel engine performance (배기 열 회수 열교환기 형식이 디젤 엔진 성능에 미치는 영향)

  • Kim, Cheol-Jeong;Choi, Byung-Chul;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.639-647
    • /
    • 2014
  • Due to global warming and depletion of fossil fuels, technologies reducing $CO_2$ emission and increasing fuel efficiency simultaneously are required. An exhaust gas heat recovery system is a technology to satisfy both issues. This study analyses three types of heat exchanger installed on an exhaust pipe. In case of plate type heat exchanger, back pressure rapidly increased and maximum cylinder pressure reduced in high speed and maximum load, and back pressure increased over twice and specific fuel consumption also increased up to 2% which were the highest increasing rate. In case of fin tube type, the amounts of exhaust emissions and specific fuel consumption rate were less than the other two types. The effect of shell and tube was in the middle. Making a decision by only the effect on engine performance, a fin tube type is the best for exhaust heat recovery systems.

Separation and Purification of Bio Gas by Hollow Fiber Gas Separation Membrane Module (중공사형 기체분리막 모듈을 이용한 바이오가스의 분리 및 정제)

  • Koh, Hyung-Chul;Ha, Seong-Yong;Woo, Seung-Moon;Nam, Sang-Yong;Lee, Byung-Seong;Lee, Chung-Seop;Choi, Whee-Moon
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.177-192
    • /
    • 2011
  • Hollow fiber membrane using CTA polymers were prepared by the phase separation method for the separation and purification of biogas and the hollow fiber gas separation membrane modules with the effective surface area of 0.17 $m^2$ were prepared. The pure gas permeation properties of membrane modules for methane, oxygen and carbon dioxide were measured. The permeance of $CO_2$ and $CH_4$were 0.46 GPU and 18.52 GPU, respectively, therefore, the high $CO_2$/$CH_4$ selectivity of 40.4 was obtained. The separation and purification test for 4 different simulated mixed gases were carried out after the pure gas test and the gas concentration and flux of the permeate at the various stage-cut were measured from the 1 stage, 2 stage, and 3 stage cascade of membrane modules. In the 1 stage test, the concentration of $CH_4$ increased as the increase of the stage-cut, while the $CH_4$ recovery efficiency ratio decreased. In the 2 stage test, the $CH_4$ recovery efficiency ratio increased compared to the 1 stage. The 3 stage test was employed to reduce the loss of $CH_4$ in biogas and the result showed less than 5% of $CH_4$ recovery loss.

Comparison of Recovery Rate and Fatty Acid Composition of Dried Sea Cucumbers Apostichopus japonicus Dried by Hybrid Heat Pump Decompression and by Hot Air (2종류의 건조기로 제조한 돌기해삼(Apostichopus japonicus)의 복원율과 지방산조성 비교)

  • Jeong, U-Cheol;Jin, Feng;Anisuzzaman, Md;Choi, Byeong-Dae;Jung, Hyun-Chol;Lee, Sang-Ro;Kang, Seok-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.3
    • /
    • pp.232-240
    • /
    • 2019
  • Approximately 80% of the world's sea cucumbers Apostichopus japonicas are processed into dried sea cucumbers. The hot air-drying method is currently used in industry, but it has many problems, such as a short drying time, severe browning, high nutrition loss, and low recovery. In this study, the moisture absorption rate, dry recovery rate, and lipid nutrient composition of sea cucumber dried by heat pump decompression and with a hybrid dryer were investigated. The moisture absorption rates for hybrid-dried sea cucumbers at 24, 48, 72, 96, and 120 h were 241.3%, 427.7%, 652.0%, 721.0%, and 742.2%, respectively. The moisture absorption rates for hot air-dried sea cucumbers were 155.8%, 240.0%, 390.3%, 655.5%, and 667.4%, respectively. Thus, moisture absorption was faster and greater with hybrid drying than with hot air drying. The dry recovery rate at 24 h was greater for hybrid-dried sea cucumber (70.7%) than for hot air-dried sea cucumber (59.8%). Saturated fatty acid contents of the hybrid- and hot air-dried sea cucumbers were 30.0% and 37.5%, respectively. Moreover, greater ${\Sigma}n-3$ polyunsaturated fatty acid content was found in hybrid-dried sea cucumber (15.8%) than in hot air-dried sea cucumber (11.7%).

Influence of Heat Treatment on Transformation Characteristics and Shape Recovery in Fe-X%/Mn-5Cr-5Co-4Si Alloy Ribbons (Fe-X%Mn-5Cr-5Co-4Si 합금 리본의 변태특성 및 형상기억능에 미치는 열처리 영향)

  • Kang, H.W.;Jee, K.K.;Jang, W.Y.;Kang, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.3
    • /
    • pp.160-166
    • /
    • 2001
  • The change of ribbon geometry, microstructure and shape recovery with Mn contents, wheel speed and various annealing temperature have been studied in Fe-X%Mn-5Cr-5Co-4Si (X%=15, 20, 24) shape memory alloy (SMA) ribbons rapidly solidfied by single roll chill-block melt-spinning process. The thickness and width of melt-spun ribbons are reduced, results in refining and uniformalizing grains with increasing wheel speed. In the ribbons melt-spun at a wheel speed of 15m/sec, both ${\varepsilon}$ and ${\alpha}^{\prime}$martensites are formed in ribbon 1 (15.5wt%Mn), while only ${\varepsilon}$ martensite is revealed in ribbon 2 (20.2wt%Mn) and ribbon 3 (23.5wt%Mn). The volume fraction of ${\varepsilon}$ martensite is decreased with increasing Mn contents, and those of ${\varepsilon}$ as well ${\alpha}^{\prime}$martensites are increased due to thermal stress relief and grain growth with increasing annealing temperature. Ms temperatures of the ribbons 1, 2 and 3 are fallen with increasing Mn contents. $M_s$ temperatures of the ribbons 1, 2 and 3 annealed at $300^{\circ}C$ for 3 min are risen abruptly, but are nearly constant even at higher annealing temperature, i.e., 400, 500 and $600^{\circ}C$ for 3 min. Shape recovery of the ribbons 1, 2 and 3 increased 30%, 52% and 69% with Mn contents, respectively. Shape recovery of ribbon 1 (15.5wt%Mn) formed ${\varepsilon}$ and ${\alpha}^{\prime}$martensites decreased because of the presence of ${\alpha}^{\prime}$martensite but those of ribbon 2 (20.2wt%Mn) and ribbon 3 (23.5wt%Mn) formed ${\varepsilon}$ martensite increased with increasing annealing temperature.

  • PDF

The effect of annealing method on dopant-activation and damage-recovery in ion-shower-doped Poly-Si using $PH_3/H_2$

  • Kim, Dong-Min;Kim, Dae-Sup;Ro, Jae-Sang;Choi, Kyu-Hwan;Lee, Ki-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1072-1075
    • /
    • 2004
  • Ion shower doping using a source gas of $PH_3/H_2$ was conducted on excimer-laser-annealed (ELA) Poly-Si. As-implanted damage is accumulated more and more with the increase of an acceleration voltage and a doping time. In this study we found that dopant-activation is relatively a rapid kinetic-process while damage-recovery is not.

  • PDF

A Study on the Improvement of Physical and Dyeing Properties of Silk Fabrics (견직물의 물성과 염색성 개선에 관한 연구)

  • 장병호;박성윤
    • Textile Coloration and Finishing
    • /
    • v.4 no.3
    • /
    • pp.122-130
    • /
    • 1992
  • To improve the physical properties and the dyeing properties of silk, the silk fabric was treated with urea resin and reactive dyeing. The effects of urea resin concentration, pH of padding bath and curing condition were investigated in order to find optimum condition and the following results are obtained The optimum condition for the crease recovery of silk fabric was urea resin concentration of 80 g/ι, pH of 7, the curings temperature of about 135$^{\circ}C$, and the curing time of 3 minutes. The crease recovery and the thermal insulation ratio of silk fabric were increased by the above treatment. K/S increased as the adding amount of Na$_2$SO$_4$ increased, K/S, however was not affected by the adding amount of Na$_2$CO$_3$. Co1or fastness of the dyed fabrics treated with urea resin were improved slightly compared with untreated ones.

  • PDF

A Study on Improvement of Performance for Perforated Type Total HEX Element (다공형 유로를 적용한 전열교환기 소자의 성능향상에 관한 연구)

  • Kwak, Kyung-Min;Bai, Cheol-Ho;Kim, Jee-Yong;Chu, Euy-Sun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.529-536
    • /
    • 2007
  • The perforated type element for a heat recovery ventilation system has been studied to improve the performance. Four holes of diameter of 6mm are punched out for each flow channel to break the boundary layer development and increase the turbulence. KS cooling and heating conditions and test procedures are applied for study. The efficiencies are compared to those of the typical element with smooth surface. For cooling operations, the temperature, latent and enthalpy efficiencies increase 2.5%, 18% and 8%, respectively. For heating operations, the temperature, latent and enthalpy efficiencies increase 3%, 5% and 3.2%, respectively.

A Separation of manganese (II) and cobalt (II) ions by D2EHPA/TBP-immobilized PolyHIPE membrane

  • Chen, Jyh-Herng;Mai, Le Thi Tuyet
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • The D2EHPA/TBP co-extractants immobilized PolyHIPE membrane can be used for the selective separation of Mn (II) from Co (II). By solvent-nonsolvent method, D2EHPA/TBP co-extractants can be effectively immobilized into PolyHIPE membrane. The pore structure of PolyHIPE membrane and the presence of TBP enhance the stability of immobilized co-extractants. The optimal operating conditions for the separation of Mn (II) and Co (II) are feeding phase at pH 5.5, sulfuric acid concentration in the stripping phase of about 50 g/L and stirring speed at 400 rpm. The D2EHPA/TBP co-extractants ratio of 5:1 shows synergetic effect on Mn/Co separation factor about 22.74. The removal rate and recovery rate of Mn (II) is about 98.4 and 97.1%, respectively, while for Co (II) the transport efficiency is insignificant. The kinetic study of Mn (II) transport shows that high initial flux, $J_f^o=80.1({\mu}mol/m^2s)$, and maxima stripping flux, $J_s^{max}=20.8({\mu}mol/m^2s)$, can be achieved with D2EHPA/TBP co-extractants immobilized PolyHIPE membrane. The stability and reusability study shows that the membrane can maintain a long term performance with high efficiency. High purity of Co (II) and Mn (II) can be recovered from the feeding phase and stripping phase, respectively.

Performance Analysis of an Oxy-fuel Combustion Power Generation System Based on Waste Heat Recovery: Influence of CO2 Capture (배열회수형 순산소연소 발전시스템의 성능해석: CO2 포집의 영향)

  • Tak, Sang-Hyun;Park, Sung-Ku;Kim, Tong-Seop;Sohn, Jeong-Lak;Lee, Young-Duk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.968-976
    • /
    • 2009
  • As the global warming becomes a serious environmental problem, studies of reducing $CO_2$ emission in power generation area are in progress all over the world. One of the carbon capture and storage(CCS) technologies is known as oxy-fuel combustion power generation system. In the oxy-fuel combustion system, the exhaust gas is mainly composed of $CO_2$ and $H_2O$. Thus, high-purity $CO_2$ can be obtained after a proper $H_2O$ removal process. In this paper, an oxy-fuel combustion cycle that recovers the waste heat of a high-temperature fuel cell is analyzed thermodynamically. Variations of characteristics of $CO_2$ and $H_2O$ mixture which is extracted from the condenser and power consumption required to obtain highly-pure $CO_2$ gas were examined according to the variation of the condensing pressure. The influence of the number of compression stages on the power consumption of the $CO_2$ capture process was analyzed, and the overall system performance was also investigated.

Performance Design of Boiler for Waste Heat Recovery of Engine Coolant by Rankine Steam Cycle (엔진 냉각수 폐열 회수를 위한 랭킨 스팀 사이클용 보일러의 성능 설계)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Hwang, Jae-Soon;Lee, Heon-Kyun;Lee, Dong-Hyuk;Park, Jeong-Sang;Lee, Hong-Yeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.58-66
    • /
    • 2011
  • A 2-loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop(HT loop) is a system to recover the waste heat from the exhaust gas, a low temperature loop(LT loop) is for heat recovery from the engine coolant cold relatively. This paper has dealt with a layout of a LT loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the LT boiler, a core part of a LT loop, has been presented and analytically investigated. Considering the characteristics of the cycle, the basic concept of the LT boiler has been determined as a shell-and tube type counterflow heat exchanger, the performance characteristics for various design parameters were investigated.