Browse > Article
http://dx.doi.org/10.12989/mwt.2019.10.2.127

A Separation of manganese (II) and cobalt (II) ions by D2EHPA/TBP-immobilized PolyHIPE membrane  

Chen, Jyh-Herng (Department of Materials and Mineral Resources Engineering, National Taipei University of Technology)
Mai, Le Thi Tuyet (College of Engineering, National Taipei University of Technology)
Publication Information
Membrane and Water Treatment / v.10, no.2, 2019 , pp. 127-137 More about this Journal
Abstract
The D2EHPA/TBP co-extractants immobilized PolyHIPE membrane can be used for the selective separation of Mn (II) from Co (II). By solvent-nonsolvent method, D2EHPA/TBP co-extractants can be effectively immobilized into PolyHIPE membrane. The pore structure of PolyHIPE membrane and the presence of TBP enhance the stability of immobilized co-extractants. The optimal operating conditions for the separation of Mn (II) and Co (II) are feeding phase at pH 5.5, sulfuric acid concentration in the stripping phase of about 50 g/L and stirring speed at 400 rpm. The D2EHPA/TBP co-extractants ratio of 5:1 shows synergetic effect on Mn/Co separation factor about 22.74. The removal rate and recovery rate of Mn (II) is about 98.4 and 97.1%, respectively, while for Co (II) the transport efficiency is insignificant. The kinetic study of Mn (II) transport shows that high initial flux, $J_f^o=80.1({\mu}mol/m^2s)$, and maxima stripping flux, $J_s^{max}=20.8({\mu}mol/m^2s)$, can be achieved with D2EHPA/TBP co-extractants immobilized PolyHIPE membrane. The stability and reusability study shows that the membrane can maintain a long term performance with high efficiency. High purity of Co (II) and Mn (II) can be recovered from the feeding phase and stripping phase, respectively.
Keywords
Mn (II) and Co (II) separation; D2EHPA; TBP; PolyHIPE membrane; separation factor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Akita, S. and Takeuchi, H. (1992), "Sorption and separation of divalent metals by a macromolecular resin containing organophosphorus acids", J. Chem. Eng., 37(3), 303-306.
2 Pospiech, B. (2014b), "Synergistic solvent extraction and transport of Zn(II) and Cu(II) across polymer inclusion membranes with mixture of TOPO and Aliquat 336", Sep. Sci. Technol., 49(11), 1706-1712.   DOI
3 Rajewski, J. and Łobodzin, P. (2016), "An experimental analysis of the transport mechanism of chromium(III) ions in the polymer inclusion membrane system stract", Problemy Eksploatacji, 1, 105-117.
4 Alguacil, F.J. (2002), "Facilitated transport and separation of manganese and cobalt by a supported liquid membrane using DP-8R as a mobile carrier", Hydrometall., 65(1), 9-14.   DOI
5 Alguacil, F.J. and Alonso, M. (2005), "Separation of zinc (II) from cobalt (II) solutions using supported liquid membrane with DP-8R (di(2-ethylhexyl) phosphoric acid) as a carrier", Sep. Purif. Technol., 41(2), 179-184.   DOI
6 Alguacil, F.J., Alonso, M. and Sastre, A.M. (2005), "Facilitated supported liquid membrane transport of gold(I) and gold (III) using Cyanex(R)921", J. Membr. Sci., 252(1-2), 237-244.   DOI
7 Baaden, M., Burgard, M. and Wipff, A.G. (2001), "TBP at the water-oil interface: The effect of TBP concentration and water acidity investigated by molecular dynamics simulations", J. Phys. Chem. B, 105(45), 11131-11141.   DOI
8 Baba, Y., Kubota, F., Goto, M., Cattrall, R.W. and Kolev, S.D. (2016), "Separation of cobalt (II) from manganese (II) using a polymer inclusion membrane with N-[N,N-di(2-ethylhexyl) aminocarbonyl methyl) glycine(D2EHAG) as the extractant/carrier", J. Chem. Technol. Biotechnol., 91(5), 1320-1326.   DOI
9 Bao, S., Zheng, R., Zhang, Y. and Chen, B. (2018), "Adsorption of vanadium (IV) on the synthesized D2EHPA-TBP impregnated resin", J. Chem. Appl. Chem. Eng., 2(1), 1-4.
10 Batchu, N.K., Sone, C.H. and Lee, M.S. (2014), "Solvent extraction in equilibrium and modeling studies of manganese from sulfate solutions by a mixture of Cyanex 301 and TBP", Hydrometall., 144, 1-6.   DOI
11 Benjjar, A., Hor, M., Riri, M., Eljaddi, T., Kamal, O., Lebrun, L. and Hlaibi, M. (2012), "A new supported liquid membrane (SLM) with methyl cholate for facilitated transport of dichromate ions from mineral acids: Parameters and mechanism relating to the transport", J. Mater. Environ. Sci., 3(5), 826-839.
12 Singare, P.U., Lokhande, R. and Madyal, R.S. (2011), "Thermal degradation studies of some strongly acidic", O. J. Phys. Chem., 1(2), 45-54.   DOI
13 Rhlalou, T., Ferhat, M., Frouji, M.A., Langevin, D., Metayer, M. and Verchere, J.F. (2000), "Facilitated transport of sugars by a resorcinarene through a supported liquid membrane", J. Membr. Sci., 168(1-2), 63-73.   DOI
14 Richard, W.B. (2012), Membrane Technology and Applications, 3rd Edition, McGraw-Hill.
15 Silverstein, M.S. (2014), "PolyHIPEs: Recent advances in emulsion-templated porous polymers", Prog. Polym. Sci., 39(1), 199-234.   DOI
16 Swain, B., Sarangi, K. and Das, R.P. (2004a), "Effect of different anions on separation of copper and zinc by supported liquid membrane using TOPS-99 as mobile carrier", J. Membr. Sci., 243(1-2), 189-194.   DOI
17 Swain, B., Sarangi, K. and Das, R.P. (2004b), "Separation of cadmium and zinc by supported liquid membrane using TOPS-99 as mobile carrier", Sep. Sci. Technol., 39(9), 2171-2188.   DOI
18 Swain, B.S., Jeong, J., Lee, J.C. and Lee, G.H. (2007), "Separation of Co (II) and Li (I) by supported liquid membrane using Cyanex 272 as mobile carrier", J. Membr. Sci., 297(1-2), 253-261.   DOI
19 Velicky, M., Tam, K.Y. and Dryfe, R.A.W. (2014), "Mechanism of ion transfer in supported liquid membrane systems: Electrochemical control over membrane distribution", Analy. Chem., 86(1), 435-442.   DOI
20 Biswas, R.K., Habib, M.A. and Mondal, M.G.K. (2005), "Kinetics and mechanism of stripping of Mn (II)-D2EHPA complex by sulphuric acid solution", Hydrometall., 80(3), 186-195.   DOI
21 Bruce, A.M. (2013), Ion Exchange and Solvent Extraction-Volume 21, Supramolecular Aspects of Solvent Extraction, 1st Edition, Taylor & Francis Group, CRC Press, Boca Raton.
22 Chen, J.H., Hsu, K.C. and Chang, Y.M. (2013), "Surface modification of hydrophobic resin with tricaprylmethylammonium chloride for the removal of trace hexavalent chromium", Ind. Eng. Chem. Res., 52(33), 11685-11694.   DOI
23 Chen, J.H., Le, T.T.M. and Hsu, K.C. (2017), "Cr (VI) separation by PolyHIPE membrane immobilized with Aliquat 336 by solvent-nonsolvent method", Membr. Water Treat., 8(6), 575-590.   DOI
24 Chen, J.H., Le, T.T.M. and Hsu, K.C. (2018), "Application of PolyHIPE membrane with Tricaprylmethylammonium chloride for Cr (VI) ions separation: Parameters and mechanism of transport relating to the pore structure", Membr., 8(1), 11.   DOI
25 Colthup, N.B., Daly, L.H. and Wiberley, S.E. (1990), Introduction to Infrared and Raman Spectroscopy, 3rd Edition, Academic Press, New York, U.S.A., London, U.K.
26 Derrick, M.R., Stulik, D. and Landry, J.M. (1999), Infrared Spectroscopy in Conservation Science: Scientific Tools for Conservation, Getty Conservation Institute, Los Angeles, California, U.S.A.
27 Dinkar, A.K., Singh, S.K., Tripathi, S.C., Gandhi, P.M., Verma, R. and Reddy, A.V.R. (2013), "Carrier facilitated transport of thorium from HCl medium using Cyanex 923 in n-dodecane containing supported liquid membrane", J. Radioanal. Nucl. Chem., 298(1), 707-715.   DOI
28 Epstein, N. (1989), "On tortuosity and the tortuosity factor in flow and diffusion through porous media", Chem. Eng. Sci., 44(3), 777-779.   DOI
29 Wilke, C.R. and Chang, P. (1955), "Correlation of diffusion coefficients in dilute solutions", AICHE J., 1(2), 264-274.   DOI
30 Draa, M.T., Belaid, T. and Benamo, M. (2004), "Extraction of Pb (II) by XAD7 impregnated resins with organophosphorus extractants (DEHPA, IONQUEST 801, CYANEX 272)", Sep. Sci. Technol., 40(1), 77-86.
31 Fatmehsari, D.H., Darvishi, D., Etemadi, S., Hollagh, A.E., Alamdari, E.K. and Salardini, A.A. (2009), "Interaction between TBP and D2EHPA during Zn, Cd, Mn, Cu, Co and Ni solvent extraction: A thermodynamic and empirical approach", Hydrometall., 98(1-2), 143-147.   DOI
32 Ferraz, H.C., Duarte, L.T., Alves, M. Di Luccio, T.L.M., Habert, A.C. and Borges, C.P. (2007), "Recent achievements in facilitated transport membranes for separation processes", Braz. J. Chem. Eng., 24(1), 101-118.   DOI
33 Gambill, W.R. (1959), "How to estimate mixtures viscosities", Chem. Eng., 66(5), 151-152.
34 Huang, D., Huang, K., Chen, S., Liu, S. and Yu, J. (2008), "Rapid reaction diffusion model for the enantio separation of phenylalanine across hollow fiber supported liquid membrane". Sep. Sci. Technol., 43(2), 259-272.   DOI
35 Huang, T.C. and Juang, R.S. (1986), "Extraction equilibrium of zinc from sulfate media with Bis(2-ethylhexyl) phosphoric acid", Ind. Eng. Chem. Fundam., 25(4), 752-757.   DOI
36 Jerabek, K., Hankova, L., Strikovsky, A.G. and Warshawsky, A. (1996), "Solvent impregnated resins: Relation between impregnation process and polymer support morphology I. Di-(2-ethylhexyl) dithiophosphoric acid", React. Funct. Polym., 28(2), 201-207.   DOI
37 Zhang, W.S., Cheng, C.Y. and Pranolo, Y. (2010), "Investigation of methods for removal and recovery of manganese in hydrometallurgical processes", Hydrometall., 101(1-2), 58-63.   DOI
38 Yang, Q., Chung, T.S., Xiao, Y. and Wang, K. (2007), "The development of chemically modified P84 Co-polyimide membranes as supported liquid membrane matrix for Cu(II) removal with prolonged stability", Chem. Eng. Sci., 62(6), 1721-1729.   DOI
39 Zha, F.F., Fane, A.G. and Fell, C.J.D. (1995), "Instability mechanisms of supported liquid membranes in phenol transport processes", J. Membr. Sci., 107(1-2), 59-74.   DOI
40 Zhang, W., Liu J., Ren, Z., Wang, S., Du, C. and Ma, J. (2009), "Kinetic study of chromium (VI) facilitated transport through a bulk liquid membrane using tri-n-butyl phosphate as carrier", Chem. Eng. J., 150(1), 83-89.   DOI
41 Zheng, R., Bao, S., Zhang, Y. and Chen, B. (2018), "Synthesis of Di-(2-ethylhexyl) phosphoric acid (D2EHPA)-tributyl phosphate (TBP) impregnated resin and application in adsorption of vanadium (IV)", Miner., 8(5), 206.   DOI
42 Mulder, M. (1991), Basic Principles of Membrane Technology, Kluer Academic Publishers Dordrecht/Boston/London.
43 Juang, R.S. (1993), "Modeling of the competitive permeation of cobalt and nickel in a di(2-thylhexyl)phosphoric acid supported liquid membrane process", J. Membr. Sci., 85(2), 157-166.   DOI
44 Kongolo, K., Mwema, D.M., Kyony, P.M. and Mfumu, K. (2000), Proceedings of the XXI International Mineral Processing Congress, Rome, Italy, July.
45 Lee, J.C., Jeong, J., Chung, K.S. and Kobayashi, M. (2004), "Active facilitated transport and separation of Co in Co-Ni sulfate solution by hollow fiber supported liquid membrane containing HEH(EHP)", Sep. Sci. Technol., 39(7), 1519 -1533.   DOI
46 Li, H., Wang, Z., Chen, L. and Huang, X. (2009), "Research on advanced materials for li-ion batteries", Adv. Mater., 21(45), 4593-4607.   DOI
47 Mehmet, K., Hamza, K.A., Ahmet, K., Nurcan, A., Ahmet, O.G. and Mustafa, A. (2011), "A kinetic study of mercury (II) transport through a membrane assisted by new transport reagent", Chem. Cent. J., 5(1), 43-49.   DOI
48 Nitta, N., Wu, F., Lee, J.T. and Yushin, G. (2015), "Li-ion battery materials: Present and future", Mater. Today, 18(5), 252-264.   DOI
49 Othman, N., Harruddin, N., Idris, A., Ooi, Z., Fatiha, N. and Sulaiman, R.N.R. (2016), "Fabrication of polypropylene membrane via thermally induced phase separation as a support matrix of tridodecylamine supported liquid membrane for red 3BS dye removal", Desalinat. Water Treat., 57(26), 12287-12301.   DOI
50 Pospiech, B. (2014a), "Selective recovery of cobalt (II) towards lithium (I) from chloride media by transport across polymer inclusion membrane with triisooctylamine", Pol. J. Chem. Technol., 16(1), 15-20.   DOI