• 제목/요약/키워드: $CO_2$ intensity reduction

검색결과 77건 처리시간 0.022초

Policy implication of nuclear energy's potential for energy optimization and CO2 mitigation: A case study of Fujian, China

  • Peng, Lihong;Zhang, Yi;Li, Feng;Wang, Qian;Chen, Xiaochou;Yu, Ang
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1154-1162
    • /
    • 2019
  • China is undertaking an energy reform from fossil fuels to clean energy to accomplish $CO_2$ intensity (CI) reduction commitments. After hydropower, nuclear energy is potential based on breadthwise comparison with the world and analysis of government energy consumption (EC) plan. This paper establishes a CI energy policy response forecasting model based on national and provincial EC plans. This model is then applied in Fujian Province to predict its CI from 2016 to 2020. The result shows that CI declines at a range of 43%-53% compared to that in 2005 considering five conditions of economic growth in 2020. Furthermore, Fujian will achieve the national goals in advance because EC is controlled and nuclear energy ratio increased to 16.4% (the proportion of non-fossil in primary energy is 26.7%). Finally, the development of nuclear energy in China and the world are analyzed, and several policies for energy optimization and CI reduction are proposed.

국내 제조업 집적이 탄소 배출 강도에 미치는 영향: 공간패널회귀모형의 적용 (A Study on Manufacturing Aggregation And Carbon Emission Intensity: Application of Spatial Panel Regression )

  • 오진;김현중
    • 무역학회지
    • /
    • 제47권3호
    • /
    • pp.157-175
    • /
    • 2022
  • This study calculates agglomeration indices of manufacturing specialization and diversification in different regions of South Korea. Two types of agglomeration indices are introduced into the spatial durbin model (SDM) to analyzes the effects of manufacturing agglomeration in Korea on CO2 emission intensity. The subjects of this study are 17 regions of South Korea , and the research period is from 2013 to 2019. This study also uses partial differential to analyze the direct and spillover effect of specialization and diversification agglomeration on CO2 emission intensity. From the perspective of direct effect, the results reveal that specialization agglomeration is an important factor contributing to Korea's CO2 emissions. However, diversification agglomeration has an obvious CO2 emission reduction effect. From the perspective of spillover effect, this study finds that specialization agglomeration in one region can also contribute to CO2 emissions in nearby regions. However, the development of diversification agglomeration in one region can have CO2 emission reduction spillover effect on neighboring regions.

고분자물질(高分子物質) 첨가(添加)에 따른 마찰저항감소(摩擦抵抗減少)에 관한 연구(硏究) (A Study on the Drag Reduction with Polymer Additives)

  • 김재근;차경옥;최형진;김종보
    • 설비공학논문집
    • /
    • 제8권2호
    • /
    • pp.198-207
    • /
    • 1996
  • It is well known that drag reduction in single phase liquid flow is affected by polymer material, molecular weight, polymer concentration, pipe diameter, and flow velocity. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to present cavitation which occurs in pump impellers. But the research of drag reduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction, mean liquid velocity, and turbulent intensity whether polymer is added in the horizontal two phase system or not. Experiment has been conducted in a test section with the inner diameter of 24mm and the length of 1,500mm. The polymer materials used are two kinds of polyacrylamide[PAAM] and co-polymer[A611P]. The polymer concentration was varied with 50, 100 and 200 ppm under the same experimental conditions. Experimental results showed that the drag reduction of co-polymer is higher than that of polyacrylamide. Mean liquid velocities increased as polymer was added, and turbulent intensity decreased inversely near the pipe wall.

  • PDF

산업연관표(2003년)를 활용한 산업별 CO2 배출 원단위 분석 (Analysis of CO2 Emission Intensity per Industry using the Input-Output Tables 2003)

  • 박필주;김만영;이일석
    • 자원ㆍ환경경제연구
    • /
    • 제18권2호
    • /
    • pp.279-309
    • /
    • 2009
  • 산업에서 발생되는 온실가스를 줄이기 위해서는 각 산업별 온실가스 발생량을 정확히 예측해야 한다. 이에 본 연구에서는 2003년 산업연관표와 에너지 사용량 통계자료를 기초로 401개 산업별 직 간접 $CO_2$ 원단위를 산출하고 이를 활용하는 방안을 검토하였다. 본 연구는 국내에 없는 일부 데이터 대신 해외 데이터 사용, 석유정제부문에 대한 분배 문제, 카본뉴트럴 측면에서 재검토 필요성, 폐기물처리 부문 과정의 일부 미고려 등에 따른 결과의 한계를 가지고 있다. 그럼에도 불구하고 부산물로 얻어지는 코크스로가스나 철강계 가스, 자원순환 관점에서 주목받고 있는 폐기물 영향까지를 고려한 401개 상세 산업별 직 간접 $CO_2$ 원단위를 산출했다는 측면에서 의미가 있다. 산업별 $CO_2$ 배출 원단위 분석 결과를 살펴보면, 간접 $CO_2$ 원단위가 크게 나타난 대표적인 산업으로는 조강, 레미콘, 선재 및 궤조, 주철물, 철근 및 봉강 산업이다. 이들 산업은 직접 $CO_2$ 원단위가 큰 산업에서 생산된 원료물질을 이용하여 제품을 생산하고 있다. 직접 $CO_2$ 배출 원단위가 크게 나타난 대표적인 산업으로는 시멘트, 선철, 석회 및 석고 제품, 석탄화합물 등 자연으로부터 채취한 원광석 등을 이용하여 다른 산업에 유용한 원료물질로 정제하는 산업이었다. 본 연구 결과는 산업별 특성이 반영된 저감 목표치 산정, $CO_2$ 저감정책별 감축 잠재량 산정, 기업의 $CO_2$ 배출량 수준 파악 및 저감 목표량을 설정할 때 유용하게 활용될 수 있다. 그 밖에도 국내에서 활발히 연구되고 있는 환경경제통합계정, 산업별 물질흐름분석 분야에서 널리 응용될 수 있을 것이다.

  • PDF

OECD 7개 국가의 CO2 배출량 감소요인 분해 분석 (Decomposition Analysis of the Reduction in CO2 Emissions from Seven OECD Countries)

  • 조향숙
    • 자원ㆍ환경경제연구
    • /
    • 제26권1호
    • /
    • pp.1-35
    • /
    • 2017
  • 본 연구에서는 탄소세를 시행하고 있는 OECD 7개 국가를 대상으로 1995년부터 2013년 기간 동안 $CO_2$ 배출량 감소에 영향을 미치는 주요 요인에 대해 분해 분석을 실시하였다. 최근까지 진행된 $CO_2$ 배출량 변화에 대한 분해 분석 연구들은 기술에 기반을 둔 물리적인 요소에만 초점을 맞추고 있으나 본 연구는 경제적 감축수단인 탄소세의 효과를 반영하여 배출량 변화요인을 분석하였다. 로그 평균 디비지아 지수(Log Mean Divisia Index, LMDI)를 이용하여 분석한 결과, OECD 7개 국가의 총 $CO_2$ 배출량 감소에 가장 큰 기여요인은 에너지 집약도 효과와 탄소세 정책 효과로 나타났다. 다음으로, OECD 7개 국가별 분해분석 결과 에너지 집약도 효과가 배출량 감소에 가장 큰 영향을 주는 것으로 나타났으나, 탄소세 정책효과와 탄소세 세수효과는 국가별 정책 상황과 여건에 따라 상이하게 나타나는 결과를 보였다.

화염증 CO2 Laser를 이용한 입자의 크기 및 형상 제어 (Control of Size and Morphology of Particles Using CO2 Laser in a Flame)

  • 이동근;이선재;최만수
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1379-1389
    • /
    • 1999
  • A new technique for control of size and shape of flame-made particles is Introduced. The characteristic sintering time can be controlled Independently of collision time by heating the particles with irradiation of laser because the sintering time strongly depends on temperature. A coflow oxy-hydrogen diffusion flame burner was used for $SiCl_4$ conversion to silica particle. Nanometer sized aggregates irradiated by a high power CW $CO_2$ laser beam were rapidly heated up to high temperatures and then were sintered to approach volume-equivalent spheres. The sphere collides much slower than the aggregate, which results in reduction of sizes of particles maintaining spherical shape. Light scattering of Ar ion laser and TEM observation using a local sampling device were used to confirm the above effects. When the $CO_2$ laser was irradiated at low position from the burner surface, particle generation due to gas absorption of laser beam occurred and thus scattering intensity increased with $CO_2$ laser power. At high irradiation position, scattering intensity decreased with $CO_2$ laser power and TEM image showed a clear mark of evaporation and recondensation of particles for high $CO_2$ laser power. When the laser was irradiated between the above two positions where small aggregates exist, average size of spherical particles obviously decreased to 58% of those without $CO_2$ laser irradiation with the spherical shape. Even for increased carrier gas flow rate by a factor of three, TEM photograph also revealed considerable reduction of particle size.

열병합발전을 이용한 집단에너지사업의 온실가스 감축효과 (Effects of District Energy Supply by Combined Heat and Power Plant on Greenhouse Gas Emission Mitigation)

  • 신경아;동종인;강재성;임용훈;김다혜
    • 한국기후변화학회지
    • /
    • 제8권3호
    • /
    • pp.213-220
    • /
    • 2017
  • The purpose of this study is to analyze effects of Greenhouse Gas (GHG) emission reduction in district energy business mainly based on Combined Heat and Power (CHP) plants. Firstly this paper compares the actual carbon intensity of power production between conventional power plants and district energy plants. To allocate the GHG from CHP plants, two of different methods which were Alternative Generation Method and Power Bonus Method, have been investigated. The carbon intensity of power production in district energy plants ($0.43tonCO_2e/MWh$) was relatively lower than conventional gas-fired power plants ($0.52tonCO_2e/MWh$). Secondly we assessed the cost effectiveness of reduction by district energy sector compared to the other means using TIMES model method. We find that GHG marginal abatement cost of 'expand CHP' scenario (-$134/ton$CO_2$) is even below than renewable energy scenario such as photovoltaic power generation ($87/ton$CO_2$). Finally the GHG emission reduction potential was reviewed on the projected GHG emission emitted when the same amount of energy produced in combination of conventional power plants and individual boilers as substitution of district energy. It showed there were 10.1~41.8% of GHG emission reduction potential in district energy compared to the combination of conventional power plants and individual boilers.

수평 2상유동에서 마찰저항감소에 관한 연구 (A study on the drag reduction in a horizontal two phase flow)

  • 차경옥;김재근
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1472-1480
    • /
    • 1996
  • The phenomena of drag reduction using small quantities of a linear macromolecules has attracted the attention of experimental investigations. It is well known that drag reduction in single phase liquid flow is affected by polymer materials, molecular weight, polymer concentration, pipe diameter and flow velocity. But the research on drag reduction in two phase flow has not intensively investigated. Drag reduction can be applied to phase change system such as chemical reactor, pool and boiling flow, and to flow with cavitation which occurs pump impellers. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, mean liquid velocity, and turbulent intensity and determine the effects of polymer additives on drag reduction in horizontal two phase flow. Experimental results show higher drag reduction using co-polymer comparing with using polyacrylamide. Mean liquid velocities increase as adding more polymer, and turbulent intensities decrease as the distance for the wall in inversed.

광반응기와 Euglena gracilis Z를 이용한 이산화탄소 고정화 공정의 거동 특성 (The Behavior of a $CO_2$Fixation Process by Euglena Gracilis Z with a Photobioreactor)

  • 신항식;채소용;황응주;임재림;남세용
    • KSBB Journal
    • /
    • 제15권6호
    • /
    • pp.644-648
    • /
    • 2000
  • Biological fixation of carbon dioxide using microalgae is known as an effective CO$_2$reduction technology. However, many environmental factors influence microalgal productivity. Optimal cultivation factors were determined for the green alga, Euglena gracilis Z, which offers high protein and vitamin E content for animal fodder. In batch culture in a photovioreactor, it was found that theinitial pH, temperature, CO$_2$concentration in air, and light intensity during the optimal cultivating conditions were 3.5, 27$^{\circ}C$, 5-10% and 520 ${\mu}$mol/㎡/s, respectively. When tap water and freshwater were used as cultivating media unsterilized tap water was found to be effective. A kinetic model was considered to determine the relationship between the specific growth rate and the light intensity. The half-velocity coefficient (K(sub)I) in the Monod model under photoautotrophic conditions was 978.9 ${\mu}$mol/㎡/s.

  • PDF

Suction과 blow fan을 이용한 연소기내의 부분 예혼합화염 연소 특성에 관한 실험적 연구 (Experimental Investigation on Premixed Combustion Characteristics with Suction & Blow Fans)

  • 강기발;김동일;오상헌
    • 한국연소학회지
    • /
    • 제7권2호
    • /
    • pp.15-23
    • /
    • 2002
  • We measured emission indices for $NO_x$, CO, temperature and radical characteristics for partially premixied flames formed by suction & blow fans air condition. At sufficiently high levels of partial premixing a double flame structure consisting of a rich premixed inner flame and outer diffusion flame was established similar to that previously observed in premixed flames. $NO_x$, Temperature. CO concentration were experimented with approximately constant air flow rate and decreasing equivalence ratios. The reduction in $NO_x$, and temperature at suction condition as compared with that for blow condition was approximately 20%, but on the contrary, CO emission was increased. In addition, We measured temperature distributions and found that temperature increased continuously with increasing partial premixing. We also estimated CH, $C_2$ radical intensity. CH and $C_2$ radicals provide evidence that, for the present measurement, CH and $C_2$ radicals intensity was associsated with their premixed component. And we observed stronger $C_2$, CH radicals intensity at suction conditions than blow conditions.

  • PDF