• Title/Summary/Keyword: $CO_2$ injection

Search Result 945, Processing Time 0.032 seconds

Process optimization for the steam injection molding (스팀사출성형에 의한 공정의 최적화)

  • Moon, Yonng-dae
    • Design & Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.10-15
    • /
    • 2015
  • The water has been the suitable for the cooling medium until now. But the water as cooling medium seem to have the limit for high speed injection. The steam plastic molding injection use the steam as the medium when raise the mold temperature. The weld line has been the major quality problems in a plastic injection parts to be difficult to be solved. These problems in injection-molded plastic parts are difficult to find the reason because these issues are usually in tradeoff realtions with each other. The purpose of this paper is to obtain the optimum injection moulding condition for improving the quality of plastic injection parts and to inquire the productivity improvement with the measured cycle time by steam plastic moluding injection. Based on these numerical results, the guidelines of mould design and injection processing condition were established. As a result, the improvement of quality and the reduction of cycle time was achieved.

  • PDF

Effect of Cyclic Injection on Migration and Trapping of Immiscible Fluids in Porous Media (공극 구조 내 교차 주입이 비혼성 유체의 포획 및 거동에 미치는 영향)

  • Ahn, Hyejin;Kim, Seon-ok;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.37-48
    • /
    • 2019
  • In geological $CO_2$ sequestration, the behavior of $CO_2$ within a reservoir can be characterized as two-phase flow in a porous media. For two phase flow, these processes include drainage, when a wetting fluid is displaced by a non-wetting fluid and imbibition, when a non-wetting fluid is displaced by a wetting fluid. In $CO_2$ sequestration, an understanding of drainage and imbibition processes and the resulting NW phase residual trapping are of critical importance to evaluate the impacts and efficiencies of these displacement process. This study aimed to observe migration and residual trapping of immiscible fluids in porous media via cyclic injection of drainage-imbibition. For this purpose, cyclic injection experiments by applying n-hexane and deionized water used as proxy fluid of $scCO_2$ and pore water were conducted in the two dimensional micromodel. The images from experiment were used to estimate the saturation and observed distribution of n-hexane and deionized water over the course drainage-imbibition cycles. Experimental results showed that n-hexane and deionized water are trapped by wettability, capillarity, dead end zone, entrapment and bypassing during $1^{st}$ drainage-imbibition cycle. Also, as cyclic injection proceeds, the flow path is simplified around the main flow path in the micromodel, and the saturation of injection fluid converges to remain constant. Experimental observation results can be used to predict the migration and distribution of $CO_2$ and pore water by reservoir environmental conditions and drainage-imbibition cycles.

Development of Hydro-Mechanical Coupling Method for CO2 Sequestration and Its Application to Sleipner Project (이산화탄소 지중저장을 위한 수리-역학 연동 해석 기술 개발 및 적용 - 슬라이프너 프로젝트)

  • Kwon, Sangki;Lee, Hyeji
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.146-160
    • /
    • 2017
  • $CO_2$ sequestration for alleviating global warming is a hot issue in the world. In this study, TOUGH2 and FLAC3D were combined for analyzing the hyro-mechanical coupling behaviors expected in $CO_2$ sequestration and applied it to Sleipner project carried out in Norway. In the analysis, the influence of pore pressure on in situ stress was considered and the influence of caprock permeability on hydro-mechanical behaviors was analyzed. In the condition of constant injection rate, pressure and saturation at the injection well, liquid and gas saturation in rock, major and minor stress variations with time and distance from the injection well, and horizontal and vertical displacements after injection could be investigated. The major principal stress was quickly increased in the early stage and then slowly decreased to a stable value, which was higher than the initial value. In contrast, the minor principal stress returned to initial value after some increase in the early stage. Surface upheaval was steadily increased and it was up to 15mm in 2 years after injection. When the caprock's permeability was changed from $3e-15m^2{\sim}3e-18m^2$, it was found that the injection well pressure and surface upheaval were inversely propotional to the permeability.

Metal Injection Molding Process of $Mo_2FeB_2$ Boride Base Cermets

  • Tashiro, Hirofumi;Hirata, Kourou;Yamasaki, Yuji;Takagi, Ken-ichi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.765-766
    • /
    • 2006
  • [ $Mo_2FeB_2$ ] boride base cermets produced by a novel sintering technique, called reaction boronizing sintering through a liquid phase, have excellent mechanical properties and wear and corrosion-resistances. Hence, the cermets are applied to the injection molding die-casting machine parts and so on. We investigated that the effect of deoxidization and sintering temperature on mechanical properties and deformation of the MIM processed cermets. As a result, deoxidization temperature of 1323K and sintering temperature of 1518K were suitable. The MIM products of the cermets showed allowable dimensional accuracy and the same mechanical properties as the press-sintered ones.

  • PDF

Stabilization of Solid Waste in Lysimeter by Air Injection Mode (공기주입 방식을 이용한 매립모형조내 폐기물 안정화)

  • Kim, Kyung;Park, Joon-Seok;Lee, Hwan;Lee, Cheol-Hyo;Kim, Joung-Dae
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • This study was conducted to evaluate air injection mode on stabilization of solid waste in lysimeter. For three lysimeters, one was maintained under anaerobic condition as control, and air was injected into two lysimeters in continuous mode (atmospheric pressure) and intermittent mode (high pressure of 2 bar). Distilled water was sprayed over solid waste in 1.4 l/$m^3$(solid waste)/day, supposing rainfall intensity of 1,200 mm/yr and 30% infiltration. Oxygen in landfill gas was not detected in control lysimeter during operational days. After 30 day-aeration, oxygen concentrations of continuous and intermittent modes were maintained in 14% and 6%, respectively. $COD_{Cr}$ removal efficiencies of continuous and intermittent modes were about 70% and 50%, and BOD5 removal efficiencies were about 80% and 20%, respectively. In view of oxygen supply, and $COD_{Cr}$ and $BOD_5$ removal, continuous air injection mode of atmospheric pressure was more effective than intermittent mode of 2 bar. Settling degree of solid waste in case of two air injection modes was 3 times higher than that of anaerobic condition as control. Considering the above results, it was thought that air injection (especially continuous atmospheric pressure) could improve degradation of solid waste and induce preliminary stabilization in landfill site.

The Effect of Fuel Injection Timing on Combustion and Power Characteristics in a DI CNG Engine (직분식 CNG 엔진에서 연료 분사시기의 변화가 연소 및 출력 특성에 미치는 영향)

  • Kang, Jeong-Ho;Yoon, Soo-Han;Lee, Joong-Soon;Park, Jong-Sang;Ha, Jong-Yul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.193-200
    • /
    • 2007
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its lower harmful emissions, including $CO_2$, and high thermal efficiency. In particular, natural gas is seen as an alternative fuel for heavy-duty Diesel Engines because of the lower resulting emissions of PM, $CO_2$ and $NO_x$. Almost all CNG vehicles use the PFI-type Engine. However, PFI-type CNG Engines have a lower brake horse power, because of reduced volumetric efficiency and lower burning speed. This is a result of gaseous charge and the time losses increase as compared with the DI-type. This study was conducted to investigate the effect of injection conditions (early injection mode, late injection mode) on the combustion phenomena and performances in the or CNG Engine. A DI Diesel Engine with the same specifications used in a previous study was modified to a DI CNG Engine, and injection pressure was constantly kept at 60bar by a two-stage pressure-reducing type regulator. In this study, excess air ratios were varied from 1.0 to the lean limit, at the load conditions 50% throttle open rate and 1700rpm. The combustion characteristics of the or CNG Engine - such as in-cylinder pressure, indicated thermal efficiency, cycle-by-cycle variation, combustion duration and emissions - were investigated. Through this method, it was possible to verify that the combustion duration, the lean limit and the emissions were improved by control of injection timing and the stratified mixture conditions. And combustion duration is affected by not only excess air ratio, injection timing and position of piston but gas flow condition.

Strength Development and Carbonation Characteristics of Slag Cement/Class C Fly Ash blended CO2 Injection Well Sealant

  • Kim, Tae Yoo;Hwang, Kyung-Yup;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.2
    • /
    • pp.29-37
    • /
    • 2016
  • CO2 injection well sealant is vulnerable to supercritical CO2 (scCO2) exposure. To develop an alternative to the conventional sealant system (class G cement/class F fly ash), the performance of slag cement (SPC) systems containing class F fly ash (FFA) or class C fly ash (CFA) was evaluated and compared with the conventional sealant under scCO2 conditions. All sealant systems showed an immediate increase in compressive strength upon scCO2 exposure and, at 37.6 MPa, SPC/CFA showed the highest compressive strength after 14 days, which was much higher than the 29.8 MPa of the conventional sealant system. Substantial decreases in porosity were observed in all sealant systems, which were partly responsible for the increase in strength. Carbonation reactions led to pH decreases in the tested sealants from 12.5 to 10~11.6. In particular, the greatest decrease in pH in slag cement/class C fly ash probably supported relatively sustainable alkali activation reactions and the integrity of cement hydrates in this system. XRD revealed the presence of CaCO3 and a decrease in the content of cement hydrates in the tested sealants upon scCO2 exposure. TGA demonstrated a greater increase of CaCO3 and calcium-silicate-hydrate phases in SPC/CFA than in the conventional sealant upon scCO2 exposure.

NOx and CO Emission Characteristics of Premixed Oxidizer-staging Combustor using a Cyclone Flow (싸이클론 유동을 이용한 예혼합 다단연소기의 NOx 및 CO 배출특성)

  • Kim, Jong-Hyun;Lee, Hyun-Yong;Hwang, Cheol-Hong;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.2
    • /
    • pp.7-13
    • /
    • 2008
  • The aim of this work is to identify application of ultra low NOx and CO combustor. To achieve this, we developed the premixed oxidizer-staging combustor using a cyclone flow. Various factors such as equivalence ratio for the combustion condition and swirl type for secondary air injection have been tested experimentally for flame stability and NOx, CO emission characteristics. Before to do this, we had been tested cyclone premixed combustor in advance. it is similar to first combustor of premixed oxidizer-staging combustor. As a result, cyclone premixed flame shows the very high flame stability and low NOx emission. however, it can be identified that there were some problems such as a little high CO emission and thermal resistance of combustor wall. Cyclone premixed oxidizer-staging combustor can resolve those of problems. In our combustor, we can found out optimal condition that the secondary air injection method is swirl type, swirl direction is co-swirl and equivalence ratio of first combustor is 1.3. Quantitatively, we can achieve 10.8 ppm for NOx and 30.2 ppm for CO emissions respectively. Form this result, we can identified that cyclone premixed oxidizer-staging combustor can apply to ultra low NOx and CO combustor.

  • PDF

Powder Injection Molding of Translucent Alumina using Supercritical Fluid Debinding

  • Kim, Hyung Soo;Byun, Jong Min;Suk, Myung Jin;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.407-414
    • /
    • 2014
  • The powder injection molding process having advantages in manufacturing three-dimensional precision parts essentially requires a debinding process before sintering to remove the binders used for preparing feedstock. In this study, powder injection molding of translucent alumina was performed, and carbon dioxide ($CO_2$) is used as a supercritical fluid that makes it possible to remove a large amount of binder, which is paraffin wax. The relationship between the optical property of translucent alumina and the debinding condition (temperature and pressure) of supercritical $CO_2$ was investigated. As temperature and pressure increased, extraction rate of the binder showed rising tendency and average grain size after sintering process was relatively fine. On the other hand, optical transmittance was reduced. As a result, the debinding condition at $50^{\circ}C$ and 20 MPa that represents the lowest extraction rate, $8.19{\times}10^{-3}m^2/sec$, corresponds to the largest grain size of $14.7{\mu}m$ and the highest optical transmittance of 45.2%.

A Study on the Injection Efficiency and Strength for Grouting Method (그라우팅공법의 최적 주입비와 강도에 관한 연구)

  • Kim, Sang-Hwan;Kim, Tae-Kyun;Choi, Jae-In;Yim, Ki-Woon
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.9
    • /
    • pp.47-58
    • /
    • 2010
  • This paper presents the injection efficiency of 2.0 shot system which was verified by strength and injection time. In order to perform this study, laboratory model tests and field tests are carried out. The laboratory model tests consist of the test of injection time for verifying the injection ratio, and the tests of homo-gel and sand-gel strengths for estimating the characteristic of strength. It is found that the injection ratio of 1:2 shows the best seepage into the ground. The results of the strengths are also larger than other injection ratio. The large strength will also be expressed by field tests at construction site.