• Title/Summary/Keyword: $CO_2$ gas sensor

Search Result 312, Processing Time 0.031 seconds

Ethanol Gas Sensing Properties of NiO-based Composite Oxide Semiconductor with Co3O4 Nanoparticles (산화코발트 나노입자의 첨가에 따른 산화니켈 기반 반도체 산화물의 에탄올 가스 검출 특성 향상)

  • Kang, Wooseung
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.382-388
    • /
    • 2016
  • NiO nanoparticles were synthesized by hydrothermal method for the application to ethanol gas sensor. They were composited with $Co_3O_4$ nanoparticles to improve the sensitivity to ethanol gas. Scanning electron microscopy revealed that the synthesized NiO nanoparticles were plate-shaped with the approximate size and thickness of 60 - 120 nm and 20 nm, respectively. On the other hand, $Co_3O_4$ nanoparticles mixed with NiO was observed to be spherical with the size range of 30 - 50 nm. The sensitivities of NiO sensors composited with $Co_3O_4$ nanoparticles at an optimal ratio of 8 : 2 were enhanced to approximately 1.44 - 1.79 times as high as those of as-synthesized NiO sensors for the ethanol concentration of 10 - 200 ppm at $200^{\circ}C$. The mechanism of the improved ethanol gas sensing of the NiO sensors composited with $Co_3O_4$ nanoparticles was discussed.

A study on the seam tracking in CO_2$ fillet welding by using an arc sensor (CO_2$ 용접에서 전기적인 아크신호를 이용한 수평 필릿 용접선 추적에 관한 연구)

  • 선채규;김재웅;나석주;조형석;최칠룡
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.70-78
    • /
    • 1990
  • The harsh nature of welding environments makes welding a prime candidate for process automation. Among the variety of welding processes available, gas metal arc welding is one of the most frequently used methods, primarily because it is highly suited to a wide range of applications, and also to automation. Automatic seam tracking method is one of the most demanded techniques for automatic control of arc welding. In this study a seam tracking system has been developed by using the welding arc itself as a sensor. This paper described the principle and experimental result of the arc sensor system, as well as the development and application of the automatic CO_2$ welding for the horizontal fillet welding. A basic problem in horizontal fillet welding is the prevention of hanging bead formation such as undercut at the vertical plate and overlap at the horizontal plate. To produce the symmetric bead shape, the relationship of bead shape to welding parameters(welding velocity, weaving width, weaving speed, tip to workpiece distance) was also investigated.

  • PDF

Temperature Compensation of Nondispersive Infrared Gas Senor: Infrared Light Absorbance (비분산 적외선 가스 센서 온도 보상법: 적외선 흡수도)

  • Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.36-41
    • /
    • 2021
  • The motivation of this paper is to easily analyze the properties of nondispersive infrared gas sensor that has more than two different optical path length and to suggest the criterion and definition of infrared light absorbance in order to minimize the measurement errors. With the output voltage ratios and the normalized derivatives of infrared ray (IR) absorbance, when the normalized derivatives of IR absorbance decreases from 0.28 to 0.10, the lower and higher limits of errors were decreased from -5.62% and 2.39% to -4.27% and 2.78%. When the normalized derivatives of IR absorbance were 0.10, the output voltage could be partitioned into two regions with one exponential equation and the temperature compensation error was less than 5%.

Application of DFB Diode Laser Sensor to Reacting Flow (I) - Estimation and Application to Laminar Flames -

  • Park, Gyung-Min;Masashi Katsuki;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1550-1557
    • /
    • 2002
  • Diode laser sensor for measuring gas temperature and species concentration in combustion chamber was developed using 2.0 tim distributed feed back lasers. To evaluate the measurement sensitivity of diode laser sensor system, CO2 survey spectra near 2.0 Um were measured and compared with the calculated one. This diode laser absorption sensor was applied to measure gas temperatures in a premixed flat flame of CH$_4$-air mixture. Experimental results were in good agreement with the values by an R-type thermocouple within 6.12%. In addition, successful demonstration of measurement of gas temperature and species concentration in a soot flame showed the promising possibility of diode laser absorption sensors for practical combustion system with non-intrusive method.

Induction of the High Order Calibration Equation of Metal Oxide Semiconductor Gas Sensors (산화물 반도체식 가스센서의 입출력 고차 캘리브레이션 방정식 도출)

  • Park, Gyoutae;Kim, Kangmin;Lee, Hyeonggi;Yoon, Myeongsub
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.44-49
    • /
    • 2020
  • In this paper, a measuring circuit is designed through analyzing manufacture specification of the sensor based on MOS. And the best input-output polynomial are induced that really gas sensors are used in gas safety management industrial fields. Response characteristics of a MOS gas sensor is analysed by through sensor's output voltages are measured after standard gases with six kinds of concentrations are manufactured and are injected to the sensor. A lookup table is created by relations of sensor's output voltages by injecting gases with other concentrations. Because data of the formed lookup table are equal interval, a polynomial can be induced of method of approximation function. So the 5th polynomial of input-output for a sensor is defined, coefficients are calculated by using least squares method, and the 5th polynomial is completed for representing characteristics of the sensor. If the proposed polynomial is applied to gas leak detectors, an inverse transformation of polynomial and programing of array codes are recreated. In this research, polynomial is implemented with array types that intervals of values of a lookup table are one-fifth sampled and interpolated. The performance of proposed 5th calibration equation is verified that errors are reduced than a linear expression when tests are performed by measurement of concentrations against injection of standard gases.

Non-invasive Transcutaneous pCO2 Gas Monitoring System for Arterial Blood Gas Analysis

  • Bang, Hyang-Yi;Kang, Byoung-Ho;Eum, Nyeon-Sik;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.311-316
    • /
    • 2011
  • Monitoring the carbon dioxide concentration in arterial blood is vital for the evaluation and prevention of pulmonary disease. Yet, domestic pure arterial blood carbon dioxide sensor technologies are not being developed, instead all sensors are imported. In this paper, we develop a real time monitoring system for arterial blood partial pressure of carbon dioxide($pCO_2$) gas from the wrist by using a carbon micro-heater. The micro-heater was fabricated with a thickness of 0.3 ${\mu}m$ in order to collect the carbon dioxide under the skin. The micro-heater has been designed to perform temperature compensation in order to prevent damage to the skin. Two clinical trials of the system were undertaken. As a result, we demonstrated that a portable, transcutaneous carbon dioxide analysis($TcpCO_2$) device produced domestically is possible. In addition, this system reduced the analysis time significantly. Carbon films could reduce the unit price of these sensors by replacing the gold film used in foreign models. Also, we developed a real time monitoring system which can be used with optical biosensors for medical diagnostics as well as gas sensors for environmental monitoring.

Fabrication of CO2 Sensor Membrane by Photolithographic Method (사진식각법을 이용한 CO2 센서 감지막의 제조)

  • Park, Lee Soon;Kim, Sang Tae;Koh, Kwang-Nak
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.6-12
    • /
    • 1998
  • A FET(Field Effect Transistor) type dissolved $CO_2$ sensor based on Severinghaus type $CO_2$ sensor was fabricated by the photolithographic process. The sensor consists of Ag/AgCl reference electrode and membranes (hydrogel membrane and $CO_2$ gas permeable membrane) on the pH-ISFET base chip. Ag/AgCl reference electrode was fabricated as follows. Ag layer was thermally evaporated and then its upper surface was chemically chloridized into the AgCl. The hydrogel used as an internal electrolyte solution was fabricated by a photolithographic method using 2-hydroxyethyl methacrylate(HEMA) and acrylamide. $CO_2$ permeable membrane on the top of the hydrogel layer was formed by photolithographic process with UV-oligomer. The FET type $pCO_2$ sensor fabricated by photolithographic method showed good linearity within the concentration range of $10^{-3}{\sim}10^0mole/{\ell}$ of dissolved $CO_2$ in aqueous solution with high sensitivity.

  • PDF

Sensing Characteristics of Thin Pt/$SnO_2$Composite Film to CO Gas (Pt/$SnO_2$복합체 박막의 CO 가스감지특성)

  • 김동현;이상훈;송호근;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.12
    • /
    • pp.1135-1139
    • /
    • 2000
  • 본 연구에서는 Pt/Sn $O_2$박막의 CO 감지특성을 향상시키기 위하여 표면 형상을 제어하였다. Pt/Sn $O_2$계 박막센서의 최적 동작온도는 175$^{\circ}C$이었다. Pt가 12초 동안 증착된 Sn $O_2$가 200ppm의 CO 가스에 대하여 1.23의 최대감도를 나타내었고, 그 이상의 Pt 증착시간 증가에 따라 Sn $O_2$위의 Pt의 coverage가 증가하여 센서의 감도를 감소시켰다. 다층박막(multi-layer thin film)의 단층의 Pt/Sn $O_2$복합체 위에 다시 Sn $O_2$및 Pt의 cluster 층들을 연속적으로 증착함으로서 제작되었다. 단지 하나의 Pt 층만을 증착한 Sn $O_2$막보다 다층의 Pt/Sn $O_2$막이 더욱 우수한 감도( $R_{air}$/ $R_{co}$=1.72, CO: 200 ppm)를 나타내었다. Pt/Sn $O_2$다층박막의 우수한 감도의 원인은 Pt와 Sn $O_2$사이의 계면적 증대 때문인 것으로 생각되어 진다.다.

  • PDF

Temperature measurement of the spray flame using micro scale absorption bands and line strength (마이크로 스케일의 흡수선과 흡수강도를 이용한 분무화염의 온도측정)

  • Choi, G.M.
    • Journal of ILASS-Korea
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2002
  • It is necessary to develope a high frequency diode laser sensor system based on the absorption spectroscopy for the measurement of temperature of the spray flame. DFB diode laser operating near $2.0{\mu}m$ was used to scan over selected $H_2O$ transitions near $1.9{\mu}m\;and\;2.2{\mu}m$, respectively. The measurement sensitivity at wide range of sweep frequency was evaluated using multi-pass cell containing $CO_2$ gas. This diode laser absorption sensor with high temporal resolution up to 10kHz was applied to measure the gas temperature in the spray flame region of liquid-gas 2-phase counter flow flame. The successful demonstration of time series temperature measurement in the spray flame gives us motivation of trying to establish non-intrusive temperature measurement method in the practical spray flame.

  • PDF

A Scientific Approach for Improving Sensitivity and Selectivity of Miniature, Solid-state, Potentiometric Carbon Monoxide Gas Sensors by Differential Electrode Equilibria Mechanism (전극평형전위차 가스 센싱 메커니즘을 적용한 일산화탄소 소형 전위차센서의 특성 향상에 관한 연구)

  • Park, Jun-Young;Kim, Ji-Hyun;Park, Ka-Young;Wachsman, Eric D.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.92-96
    • /
    • 2010
  • Based on the differential electrode equilibria approach, potentiometric YSZ sensors with semiconducting oxide electrodes for CO detection are developed. To improve the selectivity, sensitivity and response-time of the sensor, our strategy includes (a) selection of an oxide with a semiconducting response to CO, (b) addition of other semiconducting materials, (c) addition of a catalyst (Pd), (d) utilization of combined p- and n-type electrodes in one sensor configuration, and (e) optimization of operating temperatures. Excellent sensing performance is obtained by a novel device structure incorporating $La_2CuO_4$ electrodes on one side and $TiO_2$-based electrodes on opposite substrate faces with Pt contacts. The resulting response produces additive effects for the individual $La_2CuO_4$ and $TiO_2$-based electrodes voltages, thereby realizing an even higher CO sensitivity. The device also is highly selective to CO versus NO with minor sensitivity for NO concentration, compared to a notably large CO sensitivity.