• Title/Summary/Keyword: $CO_2$ emitted

Search Result 313, Processing Time 0.026 seconds

Fabrication of a Multidirectional Side-firing Optical Fiber Tip and Its Numerical Analysis (다방향 조사가 가능한 광섬유 팁 해석 및 제작)

  • Jung, Deok;Sohn, Ik-Bu;Noh, Young-Chul;Kim, Jin-Hyeok;Kim, Changhwan;Lee, Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.4
    • /
    • pp.200-206
    • /
    • 2014
  • In this paper, using the value theoretically calculated to emit multidirectionally a beam coming into an optical fiber with diameter of $125{\mu}m$, we modeled and produced a cone-shaped structure at the distal end of the fiber. A numerical simulation was performed for an optical fiber tip in which all incident beams were totally reflected and emitted toward the side, as well as for an optical fiber tip from which the beams could be emitted forward and sideways simultaneously. We produced multidirectional-firing optical fiber tips based on the simulation result and model. Laser fabrication of the optical fiber was done by processing a cone-shaped structure at the distal end of an optical fiber with diameter of $125{\mu}m$ using a femtosecond pulsed laser and polishing the processed surface with a $CO_2$ laser. We also conducted an analysis to compare experimental and simulation results.

Development of a BIM-based Carbon Dioxide Emission Estimation System -Focus on an Apartment in Korea-

  • Lee, Yong-Ju;Jun, Han-Jong
    • Architectural research
    • /
    • v.18 no.4
    • /
    • pp.145-149
    • /
    • 2016
  • Recently, a goal was set globally to reduce the Carbon Dioxide ($CO_2$) emission at national levels by 30 % in comparison to the Business As Usual (BAU) pursuant to the United Nations Framework Convention on Climate Change. As construction industry accounts for as high as 40 % of the $CO_2$ emission by the entire industrial sector in Korea, efforts toward reducing emissions from the construction industry are essential. Buildings are mainly responsible for $CO_2$ emissions, and, to reduce the $CO_2$ emitted from the buildings, a fast and accurate calculation method is required to be introduced in the architectural design phase. If the standardized data based on Building Information Modelling (BIM) is utilized, $CO_2$ emissions can be calculated quickly and accurately during the design phase. However, it is difficult for the designers who lack the knowledge regarding $CO_2$ emissions to reduce and manage such emission during the planning and design phases of buildings by estimating the quantities of various materials and the corresponding $CO_2$ emissions. Accordingly, the objective of this study is to develop a BIM-based $CO_2$ emission estimation system for a rapid and objective analysis and verification of $CO_2$ emissions.

The methods for reducing NO emitted from a combustor (연소로에서 방출되는 NO를 저감시키기 위한 방법)

  • Lee, Ki-Yong;Nam, Tae-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.453-458
    • /
    • 2000
  • The paper describes a study of the variation of the NO production emitted from turbulent propane flames established on a practical combustor where a primary and a secondary fuel lines are installed. The flowrate of the secondary fuel is pulsated or added in addition to that of the primary fuel which constrantly flows to the nozzle of the burner. Two modes depending on the positions of supplying the secondary fuel are performed; one is for its position to be placed at the center of the primary fuel tube and the other around the stabilization baffle. The mean concentrations of gas species, $O_2,\;Co\;CO_2,\;NO$, and HC(unburnt hydrocarbones) have been measured at the exit of the combustor. As equivalence ration $({\Phi})$ is increased the profile of the NO concentration on the latter mode rises slowly less than that on the former one. In the range of ${\Phi}=0.5$ to 0.54 the NO production is reduced by about 35% more on the latter mode than on the former one. The influence of pulsating the secondary fuel on the variation of the NO concentration doesn't appear at both modes.

  • PDF

Effect of Assist Gas on Laser Induced Plasma and Bead Formation in Welding of Structural Steel by CW Nd:YAG Laser (철강재료 용접에서 보조가스가 레이저플라즈마와 용입특성에 미치는 영향)

  • 김기철;신현준
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.109-115
    • /
    • 2002
  • In this study high power Nd:YAG laser welding of structural steel was investigated. For the test steel blocks of $50{\times}50{\times}200mm$ were cut and machined, and bead-on-plate weld was made on the machined surface. Argon, nitrogen, helium, dry air or mixed gases were used to find the effect of shielding conditions on the bead formation. Results demonstrated that there were Fe I rich region and Fe II rich region in the laser induced plasma column based on the spectral analysis with S-2000 field spectrometer The Fe I region was located at the root of the column near keyhole opening. On the other hand, Fe II region was found at the middle of the plasma column. In the Nd:YAG laser welding, Fe I region emitted continuum which had peak value at wave length of around 710nm, and Fe II region had the peak at 580nm. In the welding of steel by $CO_2$ laser, however, no continuum was observed. There showed two groups of strong spikes in the $CO_2$ laser welding; the first group was displayed at the wave band of 450-560nm. This spike group emitted stronger intensity of light and sharper peaks than those group at 680-800nm.

Emission Characteristics of Hazardous Air Pollutants from Diesel Heavy duty Trucks for Euro 5 (Euro 5 경유 대형트럭의 유해대기오염물질 배출특성)

  • Hong, Heekyoung;Mun, Sunhee;Seo, Seokjun;Kim, Jounghwa;Jung, Sungwoon;Chung, Taekho;Hong, Youdeog;Sung, Kijae;Kim, Sunmoon
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.74-80
    • /
    • 2018
  • Emission characteristics of regulated pollutants (CO, NOx, HC and PM) and hazardous air pollutants (HAPs) from diesel heavy duty trucks equipped with EGR+pDPF and SCR for Euro 5 emission standards were investigated using a chassis dynamometer. In the case of regulated pollutants, diesel heavy duty trucks with EGR+pDPF emitted 79% less CO than those with SCR. Also, those with the SCR emitted 36% less NOx than those with the EGR+pDPF. The results of VOCs have show that alkanes emissions for heavy duty trucks with the EGR+pDPF and the SCR have been higher than alkenes, cycloalkanes and aromatics. In the case of individual VOCs, the highest of propene emissions for 11.3~16.1% occupied. For aromatics group, benzene emissions are the highest percentage for 4.4~15.5%. In the future, the results of present study will provide basic data to set up HAPs emissions inventory for mobile source.

An Estimation of Greenhouse Gases (GHGs) Emissions from Energy Sector in Changwon City and Scenario Analysis Based on the Application of Carbon Neutral by 2050 in Korea (2050 탄소중립 시나리오를 적용한 창원시 에너지부문 온실가스 배출산정 및 시나리오 분석 )

  • Ha-Neul Kim;Jae-Hyung Jung
    • Journal of Environmental Science International
    • /
    • v.32 no.6
    • /
    • pp.419-428
    • /
    • 2023
  • This study estimates the greenhouse gases (GHGs) emissions from energy sector of Changwon city from 2012 to 2020 and scenario analysis of GHGs reductions pathways in the context of the goal of 2030 NDC and 2050 carbon neutral scenario in Korea. As a result, the GHG emissions as a reference year of carbon neutral in 2018 were estimated as 8,872,641 tonCO2eq accounting for 3,851,786 tonCO2eq (43.6%) of direct source (scope 1) and 4,975,855 tonCO2eq (56.4%) of indirect source (scope 2). Especially, among indirect sources as purchased electricity, manufacturing sector emitted the largest GHG accounting for 33.0%(2,915 thousands tonCO2eq) of the total emissions from all energy sectors, scenario analysis of GHG reductions potential from the energy was analyzed 8,473,614 tonCO2eq and the residual emissions were 354,027 tonCO2eq. Purchased electricity and industry sector reducted the largest GHG accounting for 58.7%(4,976 thousands tonCO2eq) and 42.1%(3,565 thousands tonCO2eq) of the total emissions from all energy sectors, respectively.

A Study on Estimating Ship Emission - Focusing on Gwangyang Port and Ulsan Port (선박에 기인한 대기오염물질 배출량 산정 연구 -광양항과 울산항을 중심으로)

  • Zhao, Ting-Ting;Yun, Kyong-Jun;Lee, Hyang-Sook
    • Journal of Korea Port Economic Association
    • /
    • v.35 no.2
    • /
    • pp.93-108
    • /
    • 2019
  • Recently, air pollution from the marine ports has become a serious issue all over the world. Because marine trade accounts for 99.7% of Korea's trade, efforts are required to recognize the level of port pollution and establish environmental policies. This study estimates air pollution emitted during the berthing process in the Gwangyang and Ulsan ports. Data on ship activity and characteristics are collected and reasonable methodologies and factors from EEA and EPA are adopted. The results show that 253.09 tons of CO, 1986.61 tons of NOx, 684.01 tons of SOx, 47.88 tons of $PM_{10}$, and 44.69 tons of $PM_{2.5}$ are emitted at the Gwangyang port. Further, the Ulsan port emitted 212.28 tons of CO, 1712.54 tons of NOx, 573.72 tons of SOx, 40.16 tons of $PM_{10}$, and 37.48 tons of $PM_{2.5}$. A stage-by-stage plan for installing AMP infrastructure is suggested as part of a green port policy. This research provides the current pollution status and contributes guidelines for the direction of future policy.

Optimum Mix of Extrusion panel Using Low Energy Curing Admixture (LA) based on Ground Granulated Blast-Furnace Slag and Ladle Furnace Slag (고로슬래그와 환원슬래그를 기반으로 한 저에너지양생용 결합재를 사용한 압출성형패널의 최적배합)

  • Kim, Ha-Seog;Baek, Dae-Hyun;Lee, Sea-Hyun
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.13-22
    • /
    • 2015
  • $CO_2$ emitted from building materials and construction materials industry reaches about 67 million tons, which occupy about 30 % of $CO_2$ emitted from the construction field. Controls on the use of consumed fossil fuels and reduction of emission gases are essential for the reduction of $CO_2$ in the construction area as we reduce the second and third curing to emit $CO_2$ in the construction materials industry. Accordingly, this study applied the low energy curing admixture (hereinafter "LA") to the extruded panels to observe the physical properties, depending on the mixing amount of fiber, type of fiber and mixing ratio of fiber. The type of fiber did not appear to be a main factor to affect strength, while the LA mixing ratio and mixing amount of fiber appeared to be major factors to affect strength. Especially, the highest strength was developed when the LA mixing ratio was 40%, whereas the test object with the mixing ratio of 50% resulted in the decrease of strength. In addition, it appeared that the mixing ratio of fiber greatly affected flexural strength and strength increased as the mixing ratio increased.

A Study on the Effect of De-NOx Device on GHG Emissions (De-NOx 저감장치가 온실가스 배출량에 미치는 영향 연구)

  • Kim, Sungwoo;Kim, Jeonghwan;Kim, Kiho;Oh, Sang-Ki
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.212-220
    • /
    • 2018
  • As increase the number of vehicles, the issue of greenhouse gas that was emitted by them became important. As a result, greenhouse gas (GHG) regulations are being strengthened and efforts are being actively made to reduce greenhouse gas emissions in the automotive industry. In the other hand, regulations for harmful emission of vehicles have been reinforced by step. Especially, the lastly applied step, so called Euro 6, not only decreased NOx limit down to half of Euro 5 but also introduced real driving emission limit for NOx and PN. It is a challenge for manufacturers to meet the recent GHG regulation as well as the latest emission regulation. To overcome these regulations a De-NOx after-treatment system is being applied to diesel vehicles that are known emitting the lowest GHG among conventional internal combustion engines. At the time of the introduction of Euro 6 emission standard in Korea, in the domestic fuel economy certification test, some diesel vehicles emitted more $CH_4$ than Euro 5 vehicles. As a result, it was confirmed that LNT-equipped vehicles emitted a high level $CH_4$ and the level exceeded the US emission standard. In order to determine the reason, various prior literature was investigated. However, it was difficult to find a detailed study on the methane increase with LNT. In this paper, to determine whether the characteristics of vehicles equipped with LNT the affects the above issue and other greenhouse gases, 6 passenger cars were tested on several emission test modes and ambient temperatures with a environment chamber chassis dynamometer. 2 cars of these were equipped with LNT only, other 2 cars had SCR only, and LNT + SCR were applied to remaining 2 cars. The test result shown that the vehicles equipped with LNT emitted more $CH_4$ than the vehicles with SCR only. Also, $CH_4$ tended to increase as the higher acceleration of the test mode. However, as the test temperature decreases, $CH_4$ tended to decreased. $CO_2$ was not affected by kinds of De-NOx device but characteristic of the test modes.

The Removal of Carbon Dioxide using AMP+HMDA in Absorption/Regeneration Continuous Process (흡수/재생 연속공정에서 AMP+HMDA를 이용한 이산화탄소의 제거)

  • Choi, Won-Joon;Cho, Ki-Chul;Oh, Kwang-Joong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.5
    • /
    • pp.507-513
    • /
    • 2005
  • Increasing amounts of anthropogenic $CO_2$ emitted to the atmosphere are believed to be a significant factor in global climate change. Hence, the method of chemical absorption has been suggested to separate and recover acid gases such as $CO_2$. In this study, the characteristics of absorption and regeneration of $CO_2$ for the absorbent which adding HMDA (hexamethylenediamine) into AMP (2-amino-2-methyl-1-propanol), hindered amine, was investigated in lab-scale absorption/regeneration reactor. As a result of this study, the removal efficiency of $CO_2$ increased when adding $5.9\%,\;11.7\%\;and\;23.4\%$ HMDA into $30\%$ AMP respectively. Also, the removal efficiency of $CO_2$ increased $6.5\%,\;8.4\%,\;10.3\%$ respectively as compared to AMP alone when the gas flow rate was 7.5 SL/min. In addition, all absorbents used in the study revealed the high stripping efficiency, which was almost $99\%$, at the temperature of $110^{\circ}C$. Thus, the regeneration tower should be operated at $110^{\circ}C$. At this time, the concentration of exhausted $CO_2$ was higher than $99\%$.