• Title/Summary/Keyword: $CO_2$ diffusion coefficient

Search Result 77, Processing Time 0.026 seconds

The Expectation of Effective Diffusion Coefficient of $CO_2$ on Carbonated Concrete (중성화된 콘크리트의 $CO_2$ 유효확산계수 예측)

  • 이창수;윤인석;이규동;권재근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.555-558
    • /
    • 2001
  • Carbonation of concrete decreases durability of RC structures due to failure of passive film of rebar. Therefore, expecting carbonation depth is a governing parameter of service life prediction for RC structures. This study attempt to estimate carbonation depth quantitatively by using equivalent effective diffusion coefficient of $CO_2$.

  • PDF

The study of electron transport coefficients in pure $CO_2$ by 2-term approximation of the Boltzmann equation (2항근사 볼츠만 방정식을 이용한 $CO_2$분자가스의 전자수송계수의 해석)

  • Jeon, Byung-Hoon;Kim, Ji-Yeon;Kim, Song-Gang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.164-167
    • /
    • 2001
  • The electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient $ND_L$ and $D_L/{\mu}$, in pure $CO_2$ were calculated over the wide E/N range from 0.01 to 500 Td at 1 Torr by two-term approximation of the Boltzmann equation for determination of electron collision cross sections set and for quantitative characteristic analysis of $CO_2$ molecular gas. And for propriety of two-term approximation of Boltzmann equation analysis, the calculated results compared with the electron transport coefficients measured by Nakamura.

  • PDF

Experimental Study on CO2 Diffusivity in Cementitious Materials

  • Jung, Sang-Hwa;Lee, Myung-Kue;Kim, Jee-Sang
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.69-74
    • /
    • 2005
  • The carbonation of concrete is one of the major factors that cause durability problems in concrete structures. The rate of carbonation depends largely upon the diffusivity of carbon dioxide in concrete. The purpose of this study is to identify the diffusion coefficients of carbon dioxide for various concrete mixtures. To this end, several series of tests have been planned and conducted. The test results indicate that the diffusion coefficient increases with the increase of water-cement ratio. The diffusion coefficient decreases with the increase of relative humidity at the same water-cement ratio. The diffusion of carbon dioxide reached the steady state within about five hours after exposure. The content of aggregates also influences the diffusivity of carbon dioxide in concrete. It was found that the diffusion coefficient of cement paste is larger then that of concrete or mortar. The quantitative values of diffusivity of carbon dioxide in this study will allow more realistic assessment of carbonation depth in concrete structures.

Gas Permeation Properties of Hydroxyl-Group Containing Polyimide Membranes

  • Jung, Chul-Ho;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.555-560
    • /
    • 2008
  • A series of hydroxyl-group containing polyimides (HPIs) were prepared in order to investigate the structure-gas permeation property relationship. Each polymer membrane had structural characteristics that varied according to the dianhydride monomers. The imidization processes were monitored using spectroscopic and thermog-ravimetric analyses. The single gas permeability of He, $H_2$, $CO_2$, $O_2$, $N_2$ and $CH_4$ were measured and compared in order to determine the effect of the polymer structure and functional -OH groups on the gas transport properties. Surprisingly, the ideal selectivity of $CO_2/CH_4$ and $H_2/CH_4$ increased with increasing level of -OH incorporation, which affected the diffusion of $H_2$ or the solubility of $CO_2$ in HPIs. For $H_2/CH_4$ separation, the difference in the diffusion coefficients of $H_2$ and $CH_4$ was the main factor for improving the performance without showing any changes in the solubility coefficients. However, the solubility coefficient of $CO_2$ in the HPIs increased at least four fold compared with the conventional polyimide membranes depending on the polymer structures. Based on these results, the polymer membranes modified with -OH groups in the polymer backbone showed favorable gas permeation and separation performance.

Electrochemical Properties and Synthesis of Poly(ether)tailed Cobalt(II)bipyridine Complex (폴리(에테르)사슬이 결합된 Cobalt(II)bipyridine 착물의 합성과 전기화학적 성질)

  • Kim, II Kwang;Jun, II Chul;Murray, Royce W.
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.292-301
    • /
    • 1996
  • The synthesis of poly(ether)tailed bipyridine complex as redox reaction probes has advanced attempts to interpret very slow diffusion and heterogeneous electron transfer. Diffusion coefficients as low as $1.5{\times}10^{-15}cm^2/s$ have been observed for the oxidation of neat $Co(bpy(ppgm)_2)_{3^-}(ClO_4)_2$ with $LiClO_4$ electrolyte. Heterogeneous electron transfer rate constants of materials were found to vary with diffusion coefficient. The decrease in k as the diffusion coefficient decreases was actually caused by the decreasing D. Diffusion coefficient for compound of strong ion pairing anion($ClO{_4}^-$) was much smaller than the diffusion coefficient for compound of weak ion pairing anion($CF_3COO^-$).

  • PDF

The Prediction Model of Carbonation Process by CO2 Diffusion Using the Air Permeability Coefficient for Concrete (콘크리트의 투기계수를 이용한 CO2확산 탄산화진행 예측모델)

  • Kang, Suk-Pyo;Kim, Young-Sun;Song, Ha-Won;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.209-217
    • /
    • 2010
  • Recently, some mathematical models for the prediction on progress of carbonation of concrete were reported. These models take account for $CO_2$ diffusion and chemical reaction between $Ca(OH)_2$ and $CO_2$. Based on the assumption that $CO_2$ diffuses in the carbonation zone and reacts with $Ca(OH)_2$ at the outer face of carbonation zone and non-carbonation zone. In this study, a mathematical model to predict the progress of carbonation of concrete has been established based on the reducing concentration of $Ca(OH)_2$ in the carbonation progress zone, where $Ca(OH)_2$ reacts with $CO_2$ and $Ca(OH)_2$ and $CaCO_3$ coexist. Also, the prediction model of carbonation progress rate of concrete using the air permeability coefficient regarding to $CO_2$ diffusion is developed. As a result of this study, an expression, the model equation is obtained for the prediction of carbonation based on the time and interaction velocity between $CO_2$ and Ca(OH)$_2$ dependent air permeability coefficient. The prediction by the model satisfied the experimental data of the accelerated carbonation for painted concrete. Consequently, the model can predict the rate of carbonation and the potential service life of concrete structure exposed to atmosphere.

A Study on Solid Reaction of BaCO3-TiO2 System (BaCO3-TiO2계의 고상반응에 관한 연구)

  • 이응상;황성연;임대영
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.5
    • /
    • pp.484-490
    • /
    • 1987
  • Diffusion coupling experiment was done to study expansion of body and soild reaction in BaCO3-TiO2 system. Specimen of BaCO3 and TiO2 was formed with Pt-mark's method. Each specimen was fired at interval of 25℃ from 900℃ to 1000℃ for 2hrs. After that, specimen was fixed with resin and polished. Product layers of specimen were observed with SEM and EDS. The result were following; 1. Diffusion component is Ba2+, which diffuse toward TiO2. 2. Large crack between layer of BaCO3 and Ba2TiO4 was generated because of difference of thermal expansion coefficient. 3. Ba2TiO4 is formed to TiO2 body by the reaction of BaTiO3 and BaO and its structure is very porous. 4. BaTiO3 changes immediately to Ba2TiO4 by the reaction of BaO. But BaTiO3 which formed by the reaction of TiO2 and Ba2TiO4 exsists as layer because the diffusion distance of Ba2+ is far.

  • PDF

Electrocatalytic Effect on the Oxygen Reduction and Electrochemical Properties of Co(Ⅱ)-dimethyl Bipyridine Perchlorate (Co(Ⅱ)$(dimethyl bipyridine)_3(ClO_4)_2$의 전기화학적 성질과 산소환원에 대한 전극 촉매 효과)

  • Kim, Il Kwang;Park, Chong Sool;Han, Wan Soo;Kim, Youn Keun;Jeon, Il Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.8
    • /
    • pp.385-391
    • /
    • 1997
  • Diffusion Coefficient$(D_0)$ and electrode reaction rate Constant$(K_0)$ of Co$(dimethyl bipyridine)_3(ClO_4)_2$ were determined by cyclic voltammetry and chronoamperometry. It was also investigated that the effects of solvent, concentration, and scan rate, etc. on the diffusion coefficient and the temperature effect on the rate constant. The peak currents and diffusion coefficients were dcreased as increasing the viscosity of solvent. Diffusion coefficient was $5.54{\times}10^{-6 }cm^2/sec$ and the reaction rate constant was $2.39{\times}10^{-3 }/s$ at 25$^{\circ}C$. The thermodynamic parameters such as ${\Delta}G^{\neq},\;{\Delta}H^{\neq},\;and\;{\Delta}S$ were calculated from plotting the reaction rate constants versus the solution temperatures. This compound was shown the catalytic effect on the oxygen reduction that the reduction peak current of oxygen was greatly enhanced and the peak potential was shifted to +0.2 volt.

  • PDF

Surface Diffusion Coefficients of Adatoms on Strained Overlayers (스트레인을 받고 있는 표면에서의 원자 확산계수)

  • Chung, K.H.;Yoon, J.K.;Kim, H.;Kahng, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.381-386
    • /
    • 2008
  • Adatom kinetics on the surfaces of Co overlayers, prepared on the W(110) surface, was studied with scanning tunneling microscopy. By counting the number-density of the adatom-islands, we estimated the ratio of adatom diffusion coefficients. The ratio $D_{W(110)}:D_{1ML\;Co}:D_{2ML\;Co}$ was measured to be 1 : 125 : 33000 at room temperature, where $D_{W(110)},\;D_{1ML\;Co}$, and $D_{2ML\;Co}$ are the diffusion coefficients on bare W(110) surface, on one-monolayer Co overlayer, and on two-monolayers Co overlayers, respectively. An increased diffusion coefficient on two-ML Co overlayers, relative to that on one-ML Co overlayers, was explained with the heteroepitaxial strain effect.

Prediction of Carbonation Progress Using Diffusion Coefficient of $CO_2$ in the Atmosphere ($CO_2$ 산계수를 이용한 일반 대기환경에서의 중성화진행예측)

  • Kang, Suk-Pyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.141-147
    • /
    • 2010
  • The rate of carbonation is usually low in the natural environment due to the low $CO_2$ concentration in the atmosphere. Therefore, investigation of carbonation is usually conducted under accelerated testing conditions so as to speed up the process. This study is to predict carbonation progress by mathematical model, based on the diffusions of $CO_2$ and its reaction with $Ca(OH)_2$ in carbonation progressing region, in the atmosphere. To predict of carbonation progress in the atmosphere, we adopted a diffusion coefficient of $CO_2$ that agreed well the experimental value obtained by the accelerated carbonation test. Consequently the model can predict the rate of carbonation of concrete exposed in the atmosphere regardless of finishing materials.