• Title/Summary/Keyword: $CO_2$ curing

Search Result 282, Processing Time 0.029 seconds

Durable Press Finish of Cotton via Dual Curing Using UV Light and Heat

  • Jang, Jinho;Yoon, Ki-Cheol;Ko, Sohk-Won
    • Fibers and Polymers
    • /
    • v.2 no.4
    • /
    • pp.184-189
    • /
    • 2001
  • Continuous photografting/crosslinking of polyethyleneglycol dimethacrylate oligomers onto cotton using a water-soluble benzophenone photoinitiator was investigated. Photografting increased with increasing irradiation dose, oligomer concentration and photoinitiator concentration. Maximum grafting efficiency of DM 400 and 600 were 83% and 79%, respectively. the photografting increased the wrinkle resistance of cotton implying surface crosslinking of cotton. bothsurface crosslinking and bulk crosslinking of cotton were accomplished via dual curing of a mixed formulation containing both a thermally curable component (BTCCA/SHP) and a UV-curable component. The wrinkle resistance of the crosslinked cotton was found to be higher when cured by thermal curing due to the facile post-polymerization of the UV active component. The presence of crosslinks in the dually crosslinked cotton was verified with FT-IR and thermogravimetric analysis.

  • PDF

Review on Carbonation Curing and Thermal Stability of Calcium Sulfoaluminate Cement (칼슘설포알루미네이트 시멘트의 탄산화 양생과 열 안정성에 관한 검토)

  • Wu, Xuanru;Kunal Krishna, Das;Jang, Jeong Gook
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.53-54
    • /
    • 2023
  • In recent decades, climate change has become an issue of global importance. The calcium sulfoaluminate (CSA) cement emits lower CO2 than the Portland cements while manufacturing. However, ettringite, which is a main hydration product of CSA cement, starts dehydrating at a temperature above 100℃, hence it may limit the CSA cement for high temperature application. Recently, an early carbonation curing of cement-based material has been extensively studied in terms of carbon neutralization. The carbonation curing of CSA cement has a potential to transform the AFt and AFm phases into calcium carbonate, and the transformation of unstable hydrates to stable hydrates can increase the resistance to elevated temperature. This review study summarizes and discusses the carbonation curing effect of CSA cement and the thermal stability of CSA cement exposed to elevated temperatures.

  • PDF

Gamma radiation shielding properties of poly (methyl methacrylate) / Bi2O3 composites

  • Cao, Da;Yang, Ge;Bourham, Mohamed;Moneghan, Dan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2613-2619
    • /
    • 2020
  • This work investigated the gamma-ray shielding performance, and the physical and mechanical properties of poly (methyl methacrylate) (PMMA) composites embedded with 0-44.0 wt% bismuth trioxide (Bi2O3) fabricated by the fast ultraviolet (UV) curing method. The results showed that the addition of Bi2O3 had significantly improved the gamma shielding ability of PMMA composites. Mass attenuation coefficient and half-value layer were examined using five gamma sources (Cs-137, Ba-133, Cd-109, Co-57, and Co-60). The high loading of Bi2O3 in the PMMA samples improved the micro-hardness to nearly seven times that of the pure PMMA. With these enhancements, it was demonstrated that PMMA/Bi2O3 composites are promising gamma shielding materials. Furthermore, the fast UV curing exerts its great potential in significantly shortening the production cycle of shielding material to enable rapid manufacturing.

Influence of Chemical Activators on Cement-Fly ash Paste and Strength Development of Concrete

  • Song, Jong-Taek;Yun, Sung-Dae;Kim, Jae-Young;Lee, Chin-Yong
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.103-106
    • /
    • 2000
  • The effects of replacement level, curing method and chemical admixtures were investigated in the cement-fly ash paste. The strength of cement-fly ash paste is lower than that of controlled cement paste only and the differences increase with replacement level. However, in steam curing, strength of cement-fly ash pastes is improved, especially, at early ages. In order to improve early strength, the use of $Na_2SO_4$in cement-fly ash paste increases the quality of concrete. In addition, improvement of strength of concrete including 30% of fly ash can be obtained and achieves the highest strength compared to other concrete mixtures.

  • PDF

Burning Properties of Uncured HTPB Propellant (HTPB 바인더를 이용한 미 경화 추진제의 연소 특성)

  • Kim, Nakhyun;Kim, Jungeun;Hong, Myungpyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.37-42
    • /
    • 2016
  • In this study, we examined the burning rate of the uncured propellant (with and without a curing agent application) in order to inspect the process of the HTPB solid propellant. The burning rate of the uncured propellant, that did not contain the curing agent, was approximately 9.7 mm/s at 1000 psi. In relation to the curing time, the burning rate was constant. The propellant, with the curing agent application, was approximately 8.1 mm/s showed a tendency of slowing as it burned. When the cure reaction rate was low, in accordance to the time, there were small changes in burn rate. However, when the cure reaction rate was high, the difference in burning rate was increased. The burning rate of a fully-cured propellant was approximately 6.8 mm/s, which appeared to be the lowest in order.

MECHANICAL PROPERTIES AND MICROLEAKAGE OF COMPOSITE RESIN MATERIALS CURED BY VARIABLE LIGHT INTENSITIES (가변 광도에 따른 복합레진의 기계적 물성 및 변연누출도 변화)

  • Han, Seung-Ryul;Min, Kyung-San;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.2
    • /
    • pp.134-145
    • /
    • 2003
  • Mechanical properties and microleakage of two composites [conventional hybrid type DenFil (VERICOM Co., Anyang, Korea) / micro matrix hybrid type Esthet X (Dentsply Caulk, Milford, DE, U.S.A.)] were evaluated to assess whether variable light intensity curing is better than conventional curing technique. Curing was done for 40 seconds in two ways of 2 step soft-start technique and 5 step ramping technique. Three kinds of light intensities of 50, 100, $200{\;}mW/\textrm{cm}^2$ were initially used for 10, 20, 30 seconds each and the maximum intensity of $600 {\;}mW/\textrm{cm}^2$ was used for the rest of curing time in a soft-start curing tech nique. In a ramping technique, curing was done with the same initial intensities and the light intensity was increased 5 times with the same rate to the maximum intensity of $600{\;}mW/\textrm{cm}^2$. After determining conditions that showed no different mechanical properties with conventional technique, Esthet X composite was filled in a class V cavity, which dimension was $4{\times}3{\times}1.5{\;}mm$ and cured under those conditions. Microleakage was evaluated in two ways of dye penetration and maximum gap estimation through SEM observation. ANOVA and Spearman's rho test were used to confirm any statistical significance among groups. The results were as follows : 1 Several curing conditions of variable light intensities resulted in the similar mechanical properties with a conventional continuous curing technique, except conditions that start curing with an initial light intensity of $50{\;}mW/\textrm{cm}^2$. 2. Conventional and ramping techniques were better than soft-start technique in mechanical properties of microhardness and compressive strength. 3. Soft-start group that started curing with an initial light intensity of $100{\;}mW/\textrm{cm}^2$ for 10 seconds showed the least dye penetration. Soft-start group that started curing with an initial light intensity of $200{\;}mW/\textrm{cm}^2$ for 10 seconds showed the smallest marginal gap, if there was no difference among groups. 4. Soft-start technique resulted in better dye-proof margin than conventional technique(p=0.014) and ramping technique(p = 0.002). 5. There was a very low relationship(p=0.157) between the methods of dye penetration and marginal gap determination through SEM evaluation. From the results of this study, it was revealed that ramping technique would be better than conventional technique in mechanical properties, however, soft-start technique might be better than conventional one in microleakage. It was concluded that much endeavor should be made to find out the curing conditions, which have advantages of both aspects or to solve these kinds of problems through a novel idea of polymerization.

The Compressive Strength Development of Briquette Ash by Alkali Activated Reaction (알칼리 활성반응에 의한 Briquette ash의 강도 발현 특성)

  • Seo, Myeong-Deok;Lee, Su-Jeong;Park, Hyun-Hye;Kim, Yun-Jong;Lee, Su-Ok;Kim, Taik-Nam;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • v.18 no.9
    • /
    • pp.463-469
    • /
    • 2008
  • Non-sintering cement was manufactured with briquette ash. Alkali activator for compression bodies used a NaOH solution. In order to apply alkali-activated briquette ash and the non-sintering cement to concrete, several experimental studies were performed. It was necessary to study the binder obtained by means of a substitute for the cement. This study concentrated on strength development according to the concentration of NaOH solution, the curing temperature, and the curing time. The highest compressive strength of compression bodies appeared as $353kgf/cm^2$ cured at $80^{\circ}C$ for 28 days. This result indicates that a higher curing temperature is needed to get a higher strength body. Also, geopolymerization was examined by SEM and XRD analysis after the curing of compression bodies. According to SEM and XRD, the main reaction product in the alkali activated briquette ash is aluminosilicate crystal.

Environment-friendly Coating Technology of UV/EB Radiation Curing (친환경 UV/EB 경화형 기능성 코팅 기술)

  • Lee, Jung-Bok;Lee, Jin-Hui;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.159-173
    • /
    • 2012
  • UV-Curing technology can be classified into two categories for radical curing and cation curing. It also has mainly focused on surface finishing technology to improve functionality of various substrates such as plastics and metals. On the other hand, EB technology has dealt with cross-linking reactions as well as polymerization process to create novel functional materials. Both technologies have advantages in energy utilizing efficiency and environmental friendly when compared to conventional thermoset coatings. Consequently, UV cured coatings also permits a reduction in the $CO_2$ and VOCs emitted in the drying and curing process. This review mainly shows radical curing technology which is commonly used in UV curing coatings and also describes the technology trends of cation curing which has been attracted attention recently.

A STUDY ON THE BOND STRENGTH OF HEAT-CURING ACRYIC RESIN BONDED TO A SURFACE OF CASTED ALLOY (주조 금속 표면과 열 중합 수지 표면간의 결합 강도에 관한 연구)

  • Lee, Yong-Seok;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.620-631
    • /
    • 1996
  • Bonding of resin to cast alloy has traditionally been provided by mechanical retention. But, chemical bonding methods such as silicoating, tin plating, heat treatment, application of 4-META adhesives, have been developed to overcome the problems of the mechanical bonding methods. Silicoating has been used availaby in fixed prosthodontics, but is also reported to be used in removable prosthodontics. The aim of this study is to measure the tensile bond strength between resin and metal, and compare the effect of the type of metal and the grain size of the aluminum oxide on the bond strength, after metal surface roughening, coating of the opaque resin, and curing of heat-curing resin were performed. The test groups were divided into 4 groups according to the cast alloys and the aluminum oxide particles used. Group 1 : Type 4 gold alloy(DM66) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 2 : Type 4 gold alloy(DM66) blasted with $$250{\mu}m\;Al_{2}O_3$$, Group 3 : Co-Cr alloy(Nobilium) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 4 : Co-Cr alloy(Nobilium) blasted with $$250{\mu}m\;Al_{2}O_3$$ * 10 test specimens were made on each group. The specimens were thermocycled, and Instron Universal testing machine was used to measure the tensile bond strength of the finished specimens. The results were as follows : 1. Bond strengths showed that the group of gold alloy blasted with $250{\mu}m$ aluminum oxide particle had higher bond strength, and the group of gold alloy blasted with $50{\mu}m$ aluminum oxide particles had lower bond strength than any of the other groups. 2. Gold alloy had significantly higher bond strength when blasted with $250{\mu}m$ aluminum oxide particles than $50{\mu}m$, but. Co-Cr alloy showed no statistically significant difference between the two particle sizes. 3. When blasted with $50{mu}m$ aluminum oxide particles, Co-Cr alloy showed significantly higher bond strength than gold alloy. And, when blasted with $250{\mu}m$ aluminum oxide particles, gold alloy had significantly higher bond strength than Co-Cr alloy. 4. On the examination of the fractured sites, only the group of Co-Cr alloy blasted with $50{\mu}m$ aluminum oxide particles showed a part of residual opaque resin, but all the samples of the other groups fractured between the resin and the metal.

  • PDF

An Experimental Study on the Carbonation Depth of Cement Paste Using Carbonation Reaction Accelerator (탄산화 반응 촉진제를 이용한 시멘트 페이스트의 탄산화 깊이에 관한 실험적 연구)

  • Seok-Man Jeong;Wan-Hee Yang;Dong-Cheol Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.349-354
    • /
    • 2023
  • This study wa s conducted a s pa rt of ma ximizing the use of ca rbon dioxide by a pplying CCU(Ca rbon Ca pture, Utiliza tion) a mong technologies for reducing CO2 in the cement industry. In a carbon dioxide curing environment, changes in carbonation depth and changes in basic physical properties by age due to the mixing of carbonation reaction accelerators were usually targeted at Portland cement paste. In addition, in order to check the fixed amount of CO2 in the concrete field, a thermal analysis method was applied to evaluate CaCO3 decarbonization at high temperatures. As a result of the evaluation, it was confirmed that the carbonation depth in the cured body significantly increased due to the incorporation of CRA in the carbonation depth diffusion performance. In addition, it was confirmed that the weight reduction rate increased by 23.8 % and 40.77 %, respectively, compared to Plain, in the order of curing conditions for constant temperature and humidity and curing conditions for carbonation chambers, so it was confirmed that the amount of excellent CaCO3 produced by the addition of CRA increased as the concentration of CO2 increased.