• 제목/요약/키워드: $CO_2$ addition

검색결과 4,557건 처리시간 0.044초

항온 배양 논토양 조건에서 비산재 처리에 따른 CH4와 CO2 방출 특성 (Fly Ash Application Effects on CH4 and CO2 Emission in an Incubation Experiment with a Paddy Soil)

  • 임상선;최우정;김한용;정재운;윤광식
    • 한국토양비료학회지
    • /
    • 제45권5호
    • /
    • pp.853-860
    • /
    • 2012
  • 비산재 혼합에 의한 $CH_4$$CO_2$ 방출 저감 가능성을 조사하기 위해 질소 ($(NH_4)_2SO_4$) 무처리구와 처리구를 두고 비산재를 0, 5, 10% 수준으로 혼합한 후 토양 수분 변동조건 (습윤기간, 전이기간, 건조기간)에서 60일간 실험실내 항온배양실험을 통해 $CH_4$$CO_2$ flux를 분석하였다. 전체 항온배양기간 중 평균 $CH_4$ flux는 $0.59{\sim}1.68mg\;CH_4\;m^{-2}day^{-1}$의 범위였으며, 질소 무처리구에 비해 처리구에서 flux가 낮았는데, 이는 질소 처리시 함께 시용된 $SO_4^{2-}$의 전자수용체 기능에 의해 $CH_4$ 생성이 억제되었기 때문으로 판단되었다. 질소 무처리구와 처리구에서 비산재 10% 처리에 의해 $CH_4$ flux가 각각 37.5%와 33.0% 감소하였는데, 이는 물리적인 측면에서 미립질 (실트 함량 75.4%)인 비산재 시용에 의해 통기성 대공극량이 감소되어 $CH_4$ 확산 속도가 저감되었기 때문으로 판단되었다. 또한, 생화학적 측면에서는 비산재의 $CO_2$ 흡착능에 의해 $CH_4$ 생성의 주요 기작 중 하나인 이산화탄소 환원에 필요한 $CO_2$ 공급이 억제된 것도 원인 일 수 있다. 한편, 전체 항온 배양 기간의 평균 $CO_2$ flux ($0.64{\sim}0.90g\;CO_2\;m^{-2}day^{-1}$) 역시 질소 무처리구가 질소 처리구보다 높았다. 이는 일반적으로 질소 시비에 의해 토양 호흡량이 증가한다는 기존의 연구결과와는 상이한데, 본 연구에서 질소 처리에 의해 활성화된 미생물에 의해 $CO_2$ flux 최초 측정 시점 (처리 후 2일째) 이전에 이미 상당한 양의 $CO_2$가 이미 방출되어 실측 flux에 반영되지 못했기 때문으로 설명이 가능했다. $CH_4$과 유사하게 $CO_2$ flux도 비산재무처리구에 비해 비산재 10% 처리구에서 약 20% 감소하였는데, 이는 비산재의 원소 구성 중 Ca과 Mg과 토양수내 탄산이온의 탄산염 ($CaCO_3$$MgCO_3$)화 반응에 의한 $CO_2$ 침전 때문이다. 이상과 같은 비산재 처리에 의한 $CH_4$$CO_2$ flux 감소에 의해 지구온난화지수 역시 비산재 10% 처리구에서 약 20% 감소하였다. 따라서, 비산재는 논 토양에서 $CH_4$$CO_2$ 방출 저감에 효과가 있는 것으로 나타났으며, 실재 벼 재배 포장에서의 실험을 통한 추가적인 검증이 필요하다.

Studies of the Reactions between P-donors and [$(exo-6-R-\eta^5-2-MeO{\cdot}C_6H_5)Mn(CO)_2NO]PF_6$

  • Taeg Hwan Hyeon;Taek-Mo Chung;Young Keun Chung
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권6호
    • /
    • pp.500-503
    • /
    • 1989
  • Synthetic studies have been carried out for the addition or substitution of phosphorus nucleophiles to the cation $[(exo-6-R-{\eta}^ {5_-}2-MeO-C_6H_5)Mn(CO)_2NO]PF_6,$ 2. $PPh_3$ reacts with 2 to yield the CO displaced product and $MePPh_2$ attacks the dienyl ring of 2 to yield the phosphonium adduct or the metal to give the CO displaced depending upon the reaction temperatures. Nucleophilic addition of HPPh2 to the dienyl ring of 2 gives a neutral substituted product. $P(OMe)_3$ reacts with 2 to yield a mixture of ring adduct and CO displaced product at room temperature. $At - 20^{\circ}C,\;P(OMe)_3$ attacks the dienyl ring of 2 to give a posphonium adduct, which underwent Arbuzov reaction. This reaction affords a new route to the phosphonate complexes.

Characteristics of Solid Fuel Oxidation in a Molten Carbonate Fuel Cell

  • Lee, Choong-Gon;Kim, Yu-Jeong;Kim, Tae-Kyun;Lee, Sang-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권2호
    • /
    • pp.91-96
    • /
    • 2016
  • Oxidation behaviours of ash free coal (AFC), carbon, and H2 fuels were investigated with a coin type molten carbonate fuel cell. Because AFC has no electrical conductivity, its oxidation occurs via gasification to H2 and CO. An interesting behaviour of mass transfer resistance reduction at higher current density was observed. Since the anode reaction has the positive reaction order of H2, CO2 and H2O, the lack of CO2 and H2O from AFC results in a significant mass transfer resistance. However, the anode products of CO2 and H2O at higher current densities raise their partial pressure and mitigate the resistance. The addition of CO2 to AFC reduced the resistance sufficiently, thus the resistance reduction at higher current densities did not appear. Electrochemical impedance results also indicate that the addition of CO2 reduces mass transfer resistance. Carbon and H2 fuels without CO2 and H2O also show similar behaviour to AFC: mass transfer resistance is diminished by raising current density and adding CO2.

분말사출성형에서 초임계유체를 이용한 탈지공정 (Debinding Process Using Supercritical Fluids in Metal Powder Injection Molding)

  • 김용호;임종성;이윤우;박종구
    • 한국분말재료학회지
    • /
    • 제10권1호
    • /
    • pp.6-14
    • /
    • 2003
  • The purpose of the present study is to investigate the method decreasing debinding time as well as lowering operation condition than pure supercritical $CO_2$ debinding by using cosolvent or binary mixture of propane + $CO_2$. First method is to add cosolvent, such as n-hexane, DCM, methanol, 1-butanol, in supercritical $CO_2$. In case of adding cosolvent, we were found the addition of non-polar cosolvent (n-hexane) improves dramatically the binder removal rate (more than 2 times) compared with pure supercritical $CO_2$ debinding, second method is to use mixture of supercritical propane + $CO_2$, as solvent. In case of using mixture of supercritical propane + $CO_2$, the rate of debinding speeded up with increasing of pressure and concentration of propane at 348.15 K. It was found that addition of cosolvent (e.g., n-hexane, DCM) and binary mixture propane + $CO_2$ for supercritical solvent remarkably improved binder removal rate for the paraffin wax-based binder system, in comparison with using pure supercritical $CO_2$.

Carbonate scale reduction in reverse osmosis membrane by CO2 in wastewater reclamation

  • Shahid, Muhammad Kashif;Pyo, Minsu;Choi, Young-Gyun
    • Membrane and Water Treatment
    • /
    • 제8권2호
    • /
    • pp.125-136
    • /
    • 2017
  • Reverse osmosis technology is being used on large scale for treatment of ground water, brackish water, wastewater and sea water. The most challenging issue in RO process is carbonate scaling which is directly linked with the efficiency and economy. Considering the natural phenomena of carbonate scaling different adaptations have been made to control scaling on the surface of RO membrane including acid dosage and antiscalant addition. As carbonate scaling is directly related with pH level of feed water, present study describes an experimental approach to reduce scaling on RO membrane by lowering the feed water pH by purging $CO_2$. In this comparative study four different conditions including control process (without any scale inhibitor), with dosage of antiscalant, with purging of $CO_2$ and with co addition of antiscalant and $CO_2$ in a feed stream line; it was established that $CO_2$ is a better appliance to reduce carbonate scaling on the membrane surface by reduce pH of feed stream. It was also observed that $CO_2$ and antiscalant mutually function better for scale control.

도재소부용 Ni-Cr-Mo계 치과용 합금의 미세조직 및 기계적성질 (Microstructure and Mechanical Properties of Ni-Cr-Mo Based Dental Cast Iron for Porcelain-Fused-to-Metal Firing)

  • 최답천
    • 한국주조공학회지
    • /
    • 제27권3호
    • /
    • pp.120-125
    • /
    • 2007
  • The microstructure, mechanical properties and melting range of Ni-Cr-Mo based alloys were investigated to develop Be-free Ni-Cr-Mo base dental alloys for Porcelain-Fused-to-Metal Firing(PFM). All as-cast alloys showed dendritic structure. Rockwell hardness of 20Cr7Mo was increased with addition of Si and Ti. On the contrary, it was decreased with addition of Co. The duplex alloying elemental addition such as 3Co + xTi, 2Si + xCo and 2Si + xTi to 20Cr7Mo resulted in much increase of hardness. Rockwell hardness and compressive strength for 20Cr3CoSiTi or 17Cr6CoSiTi alloy that add Si-Ti had similar values compared to the commercial alloys. Melting range for 20Cr3CoSiTi and 17Cr6CoSiTi alloy that add Si-Ti showed similar or lower than commercial alloys. In conclusion, 20Cr3CoSiTi and 17Cr6CoSiTi alloys can be applied for commercial use.

Na0.5Bi0.5TiO3-BaTiO3 계에서 입자성장 및 고상단결정성장에 미치는 Na2CO3 첨가 효과 (Effect of Na2CO3 Addition on Grain Growth Behavior and Solid-state Single Crystal Growth in the Na0.5Bi0.5TiO3-BaTiO3 System)

  • 문경석
    • 한국분말재료학회지
    • /
    • 제25권2호
    • /
    • pp.104-108
    • /
    • 2018
  • Grain-growth behavior in the $95Na_{1/2}Bi_{1/2}TiO_3-5BaTiO_3$ (mole fraction, NBT-5BT) system has been investigated with the addition of $Na_2CO_3$. When $Na_2CO_3$ is added to NBT-5BT, the growth rate is higher than desired and grains are already impinging each other during the initial stage of sintering. The grain size decreases as the sintering temperature increases. With the addition of $Na_2CO_3$, a liquid phase infiltrates the interfaces between grains during sintering. The interface structure can be changed to be more faceted and the interface migration rate can increase due to fast material transport through the liquid phase. As the sintering temperature increases, the impingement of abnormal grains increases because the number of abnormal grains increases. Therefore, the average grain size of abnormal grains can be decreased as the temperature increases. The phenomenon can provide evidence that grain coarsening in NBT-5BT with addition of $Na_2CO_3$ is governed by the growth of facet planes, which would occur via mixed control.

MgCO3와 사문석을 사용한 마그네시아 시멘트의 무기 첨가제 영향 (Effect of Inorganic Admixture for Magnesia Cement Using MgCO3 and Serpentine)

  • 이종규;소정섭
    • 한국재료학회지
    • /
    • 제25권2호
    • /
    • pp.75-80
    • /
    • 2015
  • The carbon dioxide($CO_2$) released while producing building materials is substantial and has been targeted as a leading contributor to global climate change. One of the most typical method to reducing $CO_2$ for building materials is the addition of slag and fly ash, like pozzolan material, while another method is reducing $CO_2$ production by carbon negative cement development. The MgO-based cement was from the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. It is also believed that adding reactive MgO to Portland-pozzolan cements could improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, the basic research for magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as main starting materials, as well as silica fume, fly ash and blast furnace slag for the mineral admixture, were carried out for industrial waste material recycling. In order to increase the hydration activity, $MgCl_2$ was also added. To improve hydration activity, $MgCO_3$ and serpentinite were fired at $700^{\circ}C$ and autoclave treatment was conducted. In the case of $MgCO_3$ as starting material, hydration activity was the highest at firing temperature of $700^{\circ}C$. This $MgCO_3$ was completely transferred to MgO after firing. This occurred after the hydration reaction with water MgO was transferred completely to $Mg(OH)_2$ as a hydration product. In the case of using only $MgCO_3$, the compressive strength was 3.5MPa at 28 days. The addition of silica fume enhanced compressive strength to 5.5 MPa. In the composition of $MgCO_3$-serpentine, the addition of pozzolanic materials such as silica fume increased the compression strength. In particular, the addition of $MgCl_2$ compressive strength was increased to 80 MPa.

$B_{2}O_{3}-Li_{2}CO_{3}$의 첨가량에 따른 BST-MgO 후막의 구조 및 유전 특성 (Structural and Dielectirc Properties of BST-MgO with $B_{2}O_{3}-Li_{2}CO_{3}$ Thick Films)

  • 강원석;고중혁;남송민;이영희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1261-1262
    • /
    • 2007
  • At first the $Ba_{0.5}Sr_{0.5}TiO_{3}$-MgO powder with $B_{2}O_{3}-Li_{2}CO_{3}$ were made by the Sol-Gel method. And then the thick films of BST-MgO with $B_{2}O_{3}-Li_{2}CO_{3}$ were fabricated on the $Al_{2}O_{3}$ substrates coated with Pt by the screen printing method. The structural and dielectric properties of the BST-MgO thick film with $B_{2}O_{3}-Li_{2}CO_{3}$ addition were investigated. The structure of the BST-MgO with $B_{2}O_{3}-Li_{2}CO_{3}$ thick films were dense and homogeneous with no pores. The dielectric constant and dielectric loss were increased with decreasing the $B_{2}O_{3}-Li_{2}CO_{3}$ addition ratio.

  • PDF

The Influence of a Second Metal on the Ni/SiC Catalyst for the Methanation of Syngas

  • Song, Lanlan;Yu, Yue;Wang, Xiaoxiao;Jin, Guoqiang;Wang, Yingyong;Guo, XiangYun
    • Korean Chemical Engineering Research
    • /
    • 제52권5호
    • /
    • pp.678-687
    • /
    • 2014
  • The catalytic performance of silicon carbide supported nickel catalysts modified with or without second metal (Co, Cu and Zn) for the methanation of CO has been investigated in a fixed-bed reactor using a feed consisting of 25% CO and 75% $H_2$ without any diluent gas. It has been found that the introduction of Co species can clearly improve the catalytic activity of Ni/SiC catalyst, whereas the addition of Cu or Zn can result in a significant decrease in the catalytic activity. The characterizations by means of XRD, TEM, XPS, CO-TPD and $H_2$-TPR indicate that the addition of Co could decrease the particle size of active metal, increase active sites on the surface of methanation catalyst, improve the chemisorption of CO and enhance the reducibility of methanation catalysts. Additionally, the special interaction between Co species and Ni species is likely favorable for the dissociation of adsorbed CO on the surface of catalyst, and this may also contribute to the high activity of 5Co-Ni/SiC catalyst for CO methanation reaction. For 5Cu-Ni/SiC catalyst and 5Zn-Ni/SiC catalyst, Cu and Zn species could cover partial nickel particles and decrease the chemisorption amount of CO. These could be responsible for the low methanation activity. In addition, a 150h stability test under 2 MPa and $300^{\circ}C$ showed that 5Co-Ni/SiC catalyst was very stable for CO methanation reaction.