• 제목/요약/키워드: $CO_2$ NAF

검색결과 7건 처리시간 0.026초

낙동강 중하류에서 이산화탄소 과포화 및 순배출 특성 분석 (Characterizing CO2 Supersaturation and Net Atmospheric Flux in the Middle and Lower Nakdong River)

  • 이은주;정세웅;박형석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.416-416
    • /
    • 2019
  • 육상 담수는 대기중 이산화탄소($CO_2$) 배출의 중요한 발생원으로 주목되고 있다. 하천 및 강에서 대기중으로 배출되는 $CO_2$는 전 세계 탄소순환의 핵심요소이며, 대부분의 하천과 강은 $CO_2$로 과포화 되어있다. 세계적으로 하천 및 강의 $CO_2$ 배출량은 호수 및 저수지의 배출량보다 약 5배 많은 것으로 보고되고 있으나, 국내연구에서는 연구사례가 드물다. 따라서 본 연구의 목적은 낙동강 중하류에 위치해있는 강정고령보(GGW), 달성보(DSW), 합천창녕보(HCW), 창녕함안보(CHW)에서 발생되는 순 대기 배출 플럭스(Net Atmospheric Flux, NAF)의 동적 변동 특성을 분석하고, 데이터마이닝 기법을 적용하여 쉽게 수집할 수 있는 물리적 및 수질 변수로 $CO_2$ NAF를 추정하는데 사용할 수 있는 간략한 예측 모델을 개발하는데 있다. $CO_2$ NAF는 대기-수면 경계면에서의 $CO_2$ 부분압($pCO_2$)의 차에 기체전달속도를 곱하여 산정하였으며, 기체전달속도는 Cole and Caraco(1998)가 제안한 식을 사용하였다. 담수와 해수의 탄산염 시스템에서 열역학적 화학평형을 모두 고려한 $CO_2$SYS 프로그램을 사용하여 수중의 $pCO_2$를 산정하였고, $CO_2$ NAF는 Henry의 법칙과 Fick의 1차 확산법칙을 사용하여 계산하였다. $CO_2$ NAF의 시간적 변동성에 영향을 미치는 환경요인을 평가하기 위해서 상관분석, 주성분분석(Principal Component Analysis; PCA), 단계적다중회귀모델(Step-wise Multiple Linear Regression; SMLR), 랜덤포레스트(Random Forest; RF)방법을 사용하였다. SMLR 모델은 R package인 olsrr, RF 모델은 R package인 caret, randomForest를 이용하여 분석하였다. 연구 결과, 4개 보 상류 하천구간은 조류의 성장이 활발한 일부 기간을 제외한 대부분의 기간에서 $CO_2$를 대기로 배출하는 종속영양시스템(Heterotrophic system)을 보였다. $CO_2$ NAF의 중위값은 HCW에서 최소 $391.5mg-CO_2/m^2day$, DSW에서 최대 $1472.7mg-CO_2/m^2day$였다. 모든 보에서 NAF는 pH와 강한 음의 상관관계를 보였으며, $pCO_2$와 Chl-a도 음의 상관관계를 보였다. 이는 조류가 수중에서 $CO_2$를 소비하고 pH를 증가시키기 때문이다. PCA 분석 결과, NAF와 $pCO_2$가 높은 공분산을 보였으며, pH와 Chl-a는 반대 방향으로 군집되어 상관분석과 동일한 결과를 보였다. 이 연구를 통해 개발된 SMLR 모델과 RF 모델의 Adj. $R^2$ 값은 모든 보에서 0.77 이상으로 나왔으며, $pCO_2$ 측정 데이터가 없더라도 하천의 $CO_2$ NAF를 추정하는 방법으로 사용될 수 있을 것으로 평가된다.

  • PDF

성층화된 저수지에서 CO2 NAF 산정 및 영향 인자 분석 (CO2 net atmospheric flux estimation and influence factors analysis in a stratified reservoir)

  • 박형석;정세웅;이은주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.73-73
    • /
    • 2019
  • 지구 표면의 약 2%에 해당하는 담수에서 육상계 전체가 흡수하는 탄소의 50%가 배출되며, 이는 토양표면에서 배출되는 탄소량에 비해 더 큰 수치로 전 지구적 탄소순환 해석에 중요한 역할을 한다. 특히, 내륙수역과 대기의 경계면에서 $CO_2$ 이동은 전 지구적 탄소순환의 중요한 구성요소로 평가되고 있다. 호수와 저수지 같은 담수 저류시설은 육상에서 기인한 탄소의 운송 및 처리 역할을 한다. 하지만, 저수지에서 온실가스배출량을 평가할 수 있는 명확한 방법론이 부족하며, 전지구 규모 GHGs배출량에 대한 추정에 대한 불확실성이 상당히 큰 상황이다. 본 연구에서는 몬순기후대에 위치한 인공저수지를 대상으로 보다 신뢰도있는 온실가스 배출량 추정을 위해 $CO_2$ NAF 산정하고, 산정에 영향을 미치는 인자들을 분석 하였다. 분석을 위해 $CO_2$ NAF 산정에 필요한 수리 및 수질 인자들을 2017년부터 2018년까지 수집하고, 기초통계량 및 상관분석을 실시하였다. 또한, 주성분분석(PCA) 및 다중선형회귀모델(MLR)과 랜덤포레스트(RF) 기법을 사용해 변수 중요도를 평가하였으며, $CO_2$ NAF 산정 주요인자인 기체교환 계수를 경험적 모델 3종(Cole and Caraco, Crusius, Vachon), 표면갱신형 모델 4종(Heiskanen, Maclntyre, Read, Soloviev)을 비교, 검토하였다. 조사기간 동안 기체교환계수 산정 결과 Crusius 모델 예측값이 평균 $0.342(0.047{\sim}4.323)cm\;hr^{-1}$으로 검토한 모델중 가장 낮은 평균값을 보였으며, Heiskane 모델이 $2.135(0.337{\sim}5.152)cm\;hr^{-1}$으로 가장 큰 평균값을 보였다. 대상 수체는 연주기로 완전혼합되며 수온성층이 약화되는 시기에 저수지 표층 아래에 축적된 탄소가 표층으로 전달되어 높은 수준의 p$CO_2$를 보이며, 수표면에 큰 난류 강도가 작용하는 기간에 대기중으로 배출(pulse emission) 기작이 나타난다. NAF 산정결과 경험적 모델의 NAF값($-1246.0{\sim}6510.3mg-CO_2m^{-2}day^{-1}$)은 표면갱신형 모델 NAF값($-1436.1{\sim}8485.7mg-CO_2m^{-2}day^{-1}$)보다 낮은 수준을 보였으며, 풍속의 함수만을 이용하는 경험적 모델보다 부력 플럭스와 난류 혼합의 영향을 고려하는 Macintyre, Heiskanen모델이 성층 저수지의 $CO_2$ NAF 산정에 적합한 것으로 나타났다. $CO_2$ NAF 산정의 주요인자로 MLR모델은 Tw, EC, pH, Chla, TOC, Alk, RF모델은 EC, DO, TOC가 중요 변수로 평가되었다. PCA 분석결과, 수온이 낮고 성층이 약화되며 pH가 낮은 상태에서 NAF가 큰 것으로 나타났다.

  • PDF

낙동강 중하류에서 이산화탄소 순배출 플럭스 산정 및 영향인자 분석 (Estimation of CO2 Net Atmospheric Flux in the Middle and Lower Nakdong River, and Influence Factors Analysis)

  • 이은주;정세웅;박형석;김성진;박대연
    • 한국물환경학회지
    • /
    • 제35권4호
    • /
    • pp.316-331
    • /
    • 2019
  • Carbon dioxide($CO_2$) emission from rivers to the atmosphere is a key component in the global carbon cycle. Most of the rivers are supersaturated with $CO_2$. At a global scale, the amount of $CO_2$ emission from rivers is reported to be five-fold greater than that from lakes and reservoirs, but relevant data are rare in Korea. The objectives of this study is to estimate the $CO_2$ net atmospheric flux(NAF) from the upstream of Gangjeong-Goryeong Weir(GGW), Dalseong Weir(DSW), Hapcheon-Changnyeong Weir(HCW), and Changnyeong-Haman Weir(CHW) located in Nakdong River South Korea) using field and laboratory experiments and to apply data mining techniques to develop parsimonious prediction models that can be used to estimate $CO_2$ NAF with physical and water quality variables that can be collected easily. As a result, the study sites were all heterotrophic systems that often released $CO_2$ to the atmosphere, except when the algal photosynthesis was active.The median $CO_2$ NAF was minimum $391.5mg-CO_2/m^2$ day at GGW and maximum $1472.7mg-CO_2/m^2$ day at DSW. The $CO_2$ NAF showed a negative correlation with pH and Chl-a since the overgrowth of the algae consumed $CO_2$ in the water and increased the pH. As the parsimonious multiple regression model and random forest model developed, this study showed an excellent performance with the $Adj.R^2$ value higher than 0.77 in all weirs. Thus, these methods can be used to estimate $CO_2$ NAF in the river even if there is no $pCO_2$ measurement data.

온대지역 부영양 저수지의 이산화탄소 배출량 산정 (Estimation of CO2 Emission from a Eutrophic Reservoir in Temperate Region)

  • 정세웅;유지수;박형석
    • 한국물환경학회지
    • /
    • 제32권5호
    • /
    • pp.433-441
    • /
    • 2016
  • Many large dams have been constructed for water supply, irrigation, flood control and hydropower in Korea for the last century. Meanwhile, recent studies indicated that the artificial reservoirs impounded by these dams are major sources of carbon dioxide (CO2) to the atmosphere and relevant to global budget of green house gases. However, limited information is available on the seasonal variations of CO2 evasion from the reservoirs located in the temperate monsoon regions including Korea. The objectives of this study were to estimate daily Net Atmospheric Flux (NAF) of CO2 in Daecheong Reservoir located in Geum River basin of Korea, and analyze the influencing parameters that characterize the variation of NAF. Daily pH and alkalinity (Alk) data collected in wet year (2012) and dry year (2013) were used for estimating the NAFs in the reservoir. The dissolved inorganic carbon (DIC) was computed using the pH and Alk measurements supposing an equilibrium state among the carbonate species. The results showed seasonal variations of NAF; negative NAFs from May to October when the primary production of the reservoir increased with water temperature increase, while positive NAF for the rest of the period. Overall the reservoir acted as sources of CO2 to the atmosphere. The estimated NAFs were 2,590 and 771 mg CO2 m-2d-1 in 2012 and 2013, respectively, indicating that the NAFs vary a large extent for different hydrological years. Statistical analysis indicated that the NAFs are negatively correlated to pH, water temperature, and Chl-a concentration of the reservoir.

CE-QUAL-W2를 이용한 성층 저수지에서 CO2의 시공간적 분포 및 물질수지 분석 (Characterizing Spatiotemporal Variations and Mass Balance of CO2 in a Stratified Reservoir using CE-QUAL-W2)

  • 박형석;정세웅
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.508-520
    • /
    • 2020
  • Dam reservoirs have been reported to contribute significantly to global carbon emissions, but unlike natural lakes, there is considerable uncertainty in calculating carbon emissions due to the complex of emission pathways. In particular, the method of calculating carbon dioxide (CO2) net atmospheric flux (NAF) based on a simple gas exchange theory from sporadic data has limitations in explaining the spatiotemporal variations in the CO2 flux in stratified reservoirs. This study was aimed to analyze the spatial and temporal CO2 distribution and mass balance in Daecheong Reservoir, located in the mid-latitude monsoon climate zone, by applying a two-dimensional hydrodynamic and water quality model (CE-QUAL-W2). Simulation results showed that the Daecheong Reservoir is a heterotrophic system in which CO2 is supersaturated as a whole and releases CO2 to the atmosphere. Spatially, CO2 emissions were greater in the lacustrine zone than in the riverine and transition zones. In terms of time, CO2 emissions changed dynamically according to the temporal stratification structure of the reservoir and temporal variations of algae biomass. CO2 emissions were greater at night than during the day and were seasonally greatest in winter. The CO2 NAF calculated by the CE-QUAL-W2 model and the gas exchange theory showed a similar range, but there was a difference in the point of occurrence of the peak value. The findings provide useful information to improve the quantification of CO2 emissions from reservoirs. In order to reduce the uncertainty in the estimation of reservoir carbon emissions, more precise monitoring in time and space is required.

저수지 CO2 배출량 산정을 위한 기계학습 모델의 적용 (Applications of Machine Learning Models for the Estimation of Reservoir CO2 Emissions)

  • 유지수;정세웅;박형석
    • 한국물환경학회지
    • /
    • 제33권3호
    • /
    • pp.326-333
    • /
    • 2017
  • The lakes and reservoirs have been reported as important sources of carbon emissions to the atmosphere in many countries. Although field experiments and theoretical investigations based on the fundamental gas exchange theory have proposed the quantitative amounts of Net Atmospheric Flux (NAF) in various climate regions, there are still large uncertainties at the global scale estimation. Mechanistic models can be used for understanding and estimating the temporal and spatial variations of the NAFs considering complicated hydrodynamic and biogeochemical processes in a reservoir, but these models require extensive and expensive datasets and model parameters. On the other hand, data driven machine learning (ML) algorithms are likely to be alternative tools to estimate the NAFs in responding to independent environmental variables. The objective of this study was to develop random forest (RF) and multi-layer artificial neural network (ANN) models for the estimation of the daily $CO_2$ NAFs in Daecheong Reservoir located in Geum River of Korea, and compare the models performance against the multiple linear regression (MLR) model that proposed in the previous study (Chung et al., 2016). As a result, the RF and ANN models showed much enhanced performance in the estimation of the high NAF values, while MLR model significantly under estimated them. Across validation with 10-fold random samplings was applied to evaluate the performance of three models, and indicated that the ANN model is best, and followed by RF and MLR models.

Succinic Anhydride로부터 N-Hydroxysuccinimide의 친환경 생산공정 개발 (Eco-Friendly Production Process of N-Hydroxysuccinimide from Succinic Anhydride)

  • 구본석;백정연;박화인;정인찬;김우선
    • 청정기술
    • /
    • 제26권2호
    • /
    • pp.91-95
    • /
    • 2020
  • 제약화학 및 정밀화학 산업에서 널리 사용되는 N-히드록시숙신이마이드(N-Hydroxysuccinimide, NHS)의 새로운 친환경적인 합성법을 개발하였다. 기존 합성법은 숙신산에 히드록시아민 반응 후 강산을 촉매로 약 70%의 수율로 NHS를 얻는다. 이 방법은 저가 숙신산을 사용하여 NHS를 얻을 수 있으나 NHS를 정제하는 데에 많은 용제가 필요하고 후처리 과정이 복잡하여 수율이 낮은 문제점이 있다. 그리고 대량생산하기에는 고온반응에 따른 안전상의 위험성이 있으며 산성 촉매를 사용함에 따른 많은 폐기물 발생과 다양한 용제를 사용함에 따라 고비용의 생산비로 인해 경제적이지 않다. 이런 단점을 보완하기 위해서 반응성이 우수한 무수 숙신산을 사용하였으며 용제의 단일화 그리고 결정화 방법을 통해 고순도 및 고수율의 NHS를 제조하는 경제적인 방법을 개발하였다. 특히 촉매를 사용하지 않는 무촉매 반응과 저온의 반응조건을 확보함으로써 80% 이상의 높은 수율로 NHS를 제조하는 새로운 친환경적인 공업적인 합성법이다. 향후에는 이 결과를 바탕으로 스케일 업 연구를 통해 상용화 생산기술을 확립하여 국외 기술이전을 추진할 예정이다.