DOI QR코드

DOI QR Code

Eco-Friendly Production Process of N-Hydroxysuccinimide from Succinic Anhydride

Succinic Anhydride로부터 N-Hydroxysuccinimide의 친환경 생산공정 개발

  • Received : 2020.02.25
  • Accepted : 2020.04.13
  • Published : 2020.06.30

Abstract

A new eco-friendly synthetic method for N-hydroxysuccinimide (NHS), widely used in the pharmaceutical and fine chemical industries, is developed. Conventional synthesis method yields NHS of about 70% after its reaction with NH2OH to succinic acid. In this method, NHS can be obtained using low-cost succinic acid, but a great deal of solvents are required as an extraction method to purify NHS, while the work-up process is complicated, resulting in low yield. In addition, there is a safety risk due to the high reaction temperature for commercial production, and it is not economical due to the high cost of production from the generation of much waste because of an acid catalyst and the use of various solvents. In order to make up for this shortcoming, this study used succinic anhydride as a raw material under low temperature reaction and developed a new eco-friendly industrial synthesis method using isobutyl alcohol for a single solvent and non-catalytic reaction. The economic evaluation confirms that there is a cost reduction effect of about 20%. In the future, based on this result, studies may establish a commercial production technology through scale-up research and proceed with foreign technology transfer.

제약화학 및 정밀화학 산업에서 널리 사용되는 N-히드록시숙신이마이드(N-Hydroxysuccinimide, NHS)의 새로운 친환경적인 합성법을 개발하였다. 기존 합성법은 숙신산에 히드록시아민 반응 후 강산을 촉매로 약 70%의 수율로 NHS를 얻는다. 이 방법은 저가 숙신산을 사용하여 NHS를 얻을 수 있으나 NHS를 정제하는 데에 많은 용제가 필요하고 후처리 과정이 복잡하여 수율이 낮은 문제점이 있다. 그리고 대량생산하기에는 고온반응에 따른 안전상의 위험성이 있으며 산성 촉매를 사용함에 따른 많은 폐기물 발생과 다양한 용제를 사용함에 따라 고비용의 생산비로 인해 경제적이지 않다. 이런 단점을 보완하기 위해서 반응성이 우수한 무수 숙신산을 사용하였으며 용제의 단일화 그리고 결정화 방법을 통해 고순도 및 고수율의 NHS를 제조하는 경제적인 방법을 개발하였다. 특히 촉매를 사용하지 않는 무촉매 반응과 저온의 반응조건을 확보함으로써 80% 이상의 높은 수율로 NHS를 제조하는 새로운 친환경적인 공업적인 합성법이다. 향후에는 이 결과를 바탕으로 스케일 업 연구를 통해 상용화 생산기술을 확립하여 국외 기술이전을 추진할 예정이다.

Keywords

References

  1. Knight, D. W., "N-Hydroxysuccinimide," Encyclopedia of Reagents for Organic Synthesis. (2001).
  2. Anderson, G. W., Zimmerman, J. F., and Callahan, F. M., "N-Hydroxysuccinimide Esters in Peptide Synthesis," J. Am. Chem. Soc., 85(19), 3039-3039 (1963).
  3. Anderson, G. W., Zimmerman, J. E., and Callahan, F. M., "The Use of Esters of N-Hydroxysuccinimide in Peptide Synthesis," J. Am. Chem. Soc., 86, 1839-1842 (1964). https://doi.org/10.1021/ja01063a037
  4. Nefkens, G. H. L., Tesser, G. I., and Nivard R. J. F., "Synthesis and Reactions of Esters of N-Hydroxyphthalimide and N-Protected Amino Acids," Rec. Trav. Chim. Des Pays-Bas., 81, 683-690 (1962).
  5. Ishii, Y., and Sakaguchi, S., "A New Strategy for Alkane Oxidation with $O_2$ using N-Hydroxyphthalimide (NHPI) as a Radical Catalyst," Catal. Surv. Asia, 3, 27-35 (1999). https://doi.org/10.1023/A:1019059315516
  6. Ishii, Y., Sakaguchi, S., and Iwahama, T., "Innovation of Hydrocarbon Oxidation with Molecular Oxygen and Related Reactions," Adv. Synth. Catal., 343, 393-427 (2001). https://doi.org/10.1002/1615-4169(200107)343:5<393::AID-ADSC393>3.0.CO;2-K
  7. Sheldon, R. A., and Arends, I. W. C. E., "Organocatalytic Oxidations Mediated by Nitroxyl Radicals," Adv. Synth. Catal., 346, 1051-1071 (2004). https://doi.org/10.1002/adsc.200404110
  8. Vanderbilt, D. P., and Butler, G. B., "Bifunctional Synthetic Enzymes via Alternating Copolymerization. I. Copolymers Containing Alternating Imidazole and Hydroxamic Functions," J. Macromol. Sci. PartA - Chem., 22, 541-578 (1985). https://doi.org/10.1080/00222338508056618
  9. Ahn, K., Koo, D., and Willson, C. G., "Synthesis and Polymerization of T-BOC Protected Maleimide Monomers: N-(t-butyloxycarbonyloxy) Maleimide and N-[p-(t-butyloxy carbonyloxy)-phenyl]maleimide," Polymer, 36, 2621-2628 (1995). https://doi.org/10.1016/0032-3861(95)91210-X
  10. Gottschalck, T. E., and Bailey, J. E., "International Cosmetic Ingredient Dictionary and Handbook," 12th ed., Personal Care Products Council, USA, 1272-1280 (2008).
  11. Son, D. L., Shun, N., and Kohki, E., "Synthesis of N-Hydroxysuccinimide from Succinic Acid and Hydroxylammonium Chloride using Amberlyst A21 as Reusable Solid Base Catalyst," AIP Conference Proceedings 1929, 020017-1-020017-6 (2018).
  12. Tang, X., Niu, B., Yang, F., Liu, G., Li, R., Wang, X., Zang, Q., and Li, M., "Preparation Method of N-hydroxysuccinimide," CN 108558728 (2018).
  13. Kajikawa, Y., "Process for Producing cyclic N-Hydroxyimide Compounds," EP 17575834 (2007).
  14. Mecinovici, J., Loenarz, C., Chowdhury, R., and Schofield, C. J., "2-Oxoglutarate Analogue Inhibitors of Prolyl Hydroxylase Domain 2," Bioorg. Med. Chem. Lett., 19(21), 6192-6195 (2009). https://doi.org/10.1016/j.bmcl.2009.09.005
  15. Xing, L., Niu, B., Yang, F., Liu, G., Li, R., Wang, X., Zhang, Q., and Li, M., "Method for Preparing N-Hydroxysuccinimide," CN108558728 (2018).
  16. Kim, D. N., and Kim, S. C., "Practical Synthesis of N-Hydroxysuccinimide Using Lewis Acid Catalyst," Appl. Chem. Eng., 30(3), 313-315 (2019). https://doi.org/10.14478/ACE.2019.1014
  17. Jaensch, H., "Process For Preparing N-Substituted Cyclic Imides," U.S. Patent, 2011/0319635 A1 (2011).
  18. Elke, F., "Process for the Preparation of Cyclic N-Hydroxydicarboximides," U.S. patent 6,316,639 B1 (2001).
  19. "Technical Policy to Fire Explosion Prevention for Hydroxylamine Etc.," Korea Occupational Safety and Health Agency., KOSHA GUIDE (P-142-2014).
  20. Hazardous Materials Handbook, 5th Edition, Maruzen, (1998).
  21. "Explosion Hazard and Safe Handling of Hydroxylamine, Etc.," JNIOSH, (NIIS-SG-No.1), (2001).
  22. "Technical Guidelines for Safe Handling of Hydroxylamine, Etc.," Ministry of Health, Labor and Welfare Ordinance No. 212, (2001).