• Title/Summary/Keyword: $CO_2$ Gas Reduction

Search Result 757, Processing Time 0.023 seconds

High Purity Hydrogen Production by Redox Cycle Operation (산화-환원 싸이클 조업에 의한 고순도 수소생성)

  • Jeon, Bup-Ju;Park, Ji-Hun
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.5
    • /
    • pp.355-363
    • /
    • 2010
  • High purity hydrogen, 97-99 vol.%, with CO at just ppm levels was obtained in a fixed bed of iron oxide employing the steam-iron cycle operation with reduction at 823K and oxidation in a steam-$N_2$ mixture at 773K TGA experiments indicated that temperature of the reduction step as well as its duration are important for preventing carbon build-up in iron and the intrusion of $CO_2$ into the hydrogen product. At a reduction temperature of 823K, oxide reduction by $H_2$ was considerably faster than reduction by CO. If the length of the reduction step exceeds optimal value, low levels of methane gas appeared in the off-gas. Furthermore, with longer durations of the reduction step and CO levels in the reducing gas greater than 10 vol.%, carbidization of the iron and/or carbon deposition in the bed exhibited the increasing pressure drop over the bed, eventually rendering the reactor inoperable. Reduction using a reducing gas containing 10 vol.% CO and a optimal reduction duration gave constant $H_2$ flow rates and off-gas composition over 10 redox reaction cycles.

Economic Analysis of Cogeneration System Considering Economical Value of $CO_2$ Reduction Effect (이산화탄소 저감 효과의 경제적인 가치를 고려한 Cogeneration System의 경제성 분석)

  • Kang, Yul-Ho;Ku, Bon-Cheol;Han, Young-Cheol;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1117-1121
    • /
    • 2008
  • Recently energy consumption and $CO_2$ emission issue are important problem on international society. The present study has been conducted economic analysis considering economical value of $CO_2$ reduction effect. We analyze annual energy cost and annual $CO_2$ emission of the cogeneration system and gas boiler system in hotel. The first results shows that annual energy cost of cogeneration system (751,740,126 won) is more profitable than gas boiler system (801,128,408 won) by 6.2% (49,388,281 won). The second results shows that annual $CO_2$ emission of cogeneration system (3,297 ton) is less than gas boiler system (3,536 ton) by 6.8% (239 ton). The Economical value of $CO_2$ reduction effect is 4,773,898 won. The cost effect according to the reduction of $CO_2$ is corresponding to 9.7% of reduction cost for total energy cost. The result of this study means that $CO_2$ reduction effect is essential item in introduction and change of facility for economic analysis.

  • PDF

Study on the reduction of $CO_2$ and NOx emission by coastal transport of import-export container cargo (수출입컨테이너화물의 연안운송에 의한 이산화탄소($CO_2$)와 질소산화물(NOx) 배출량 삭감에 관한 연구)

  • Kim S. H.;Coh C. D.;Cho Y. J.;Van S. H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.4
    • /
    • pp.42-50
    • /
    • 2001
  • In this paper, the reduction of CO₂ gas emission and exhaust gas emission by using the shift of coastal transport from land transport for import-export container cargo was proposed. At first, the domestic CO₂ gas emission, exhaust gas emission and the transportation of import-export container cargo are investigated. And also, we investigated the reduction of CO₂ gas emission and exhaust gas emission by the shift of coastal transport from land transport for the transportation of import-export container cargo between Kyongin area and Pusan Port. Finally, the change of NOx gas emission due to the change of the share of coastal transportation and using the 320TEU container ship are investigated. The research results show that the shift of coastal transport from land transport was effective to reduce the CO₂ gas emission and exhaust gas emission.

  • PDF

Application of LEAP Model to Reduce GHG Emissions from Residential Sector (LEAP 모형을 이용한 가정 부문 온실가스 저감효과 분석)

  • Jo, Mi-hyun;Park, Nyun-Bae;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.211-219
    • /
    • 2013
  • This study uses the LEAP model that is a long-term energy analysis model to analyze reduction potential on S city residential sector energy usage for greenhouse gas emission. Energy consumption of S-si in 2009 is consumed most in residential and commerce sector by 39.1%. Also, energy and greenhouse gas emission of residential sector is expected to increase due to increase of households. Therefore, greenhouse gas reduction measures are desperately required in residential sector. For this study recognizes energy consumption of S-si residential sector and has established reduction measure of S-si residential sector greenhouse gas through literature search on domestic and foreign climate change correspondence policies. Also, construction of greenhouse gas reduction potential by reduction measures through LEAP model. There were a total of 5 reduction measures scenarios is Reference Scenario, LED Lighting, Energy Alternative, Green Life Practice, and Total Reduction Measure. As a result, greenhouse gas emission of Light Emitting Diode Lightings by 2020 was $1,181.0thousand\;tonCO_2eq$, decrease of 6.1% compared to the Reference Scenario and Greenhouse gas emission of Energy Alternative by 2020 was $1,171.6thousand\;tonCO_2eq$, decrease of 6.8% compared to the Reference Scenario. Greenhouse gas emission of Green Life Practice by 2020 was $1,128.7thousand\;tonCO_2eq$, decrease of 10.2% compared to the Reference Scenario. For Total Reduction Measures by 2020 emission was $966.9thousand\;tonCO_2eq$, decrease 23.1% compared to Reference Scenario.

A Study on the Estimation of Greenhouse Gas Using Oyster Shell Recycling for Paper Filler

  • Park, Seung-Chel;Seo, Ran-Sug;Kim, Sung-Hu
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • This study has conducted greenhouse gas emission reduction test as using Oyster-shells originated PCC paper filler compare to non-Oyster shells used PCC. This examination was estimated and calculated in accordance with both IPCC (Intergovernmental Panel on Climate Change) and World Business Council for Sustainable Development (WBSCD). The greenhouse gas emission reduction estimation result indicates that, when oyster shells are recycled and used as paper filler, it reduces $27.97tCO_2\;per\;100\;ton$ of oyster shells. It is greenhouse gas emission $44.27tCO_2$ from PCC production changed to carbon emission reduction when replaced with oyster shell. LNG greenhouse gas emission $16.3tCO_2$ in relation to the pre-treatment with oyster shell per 100 ton is also reflected. As a result, it is assumed that roughly $0.2797tCO_2/oyster\;shell{\cdot}ton$.

A study on the calculation of greenhouse gas emission in industry complex of Shiwha-banwol using the method of IPCC (IPCC 방법을 이용한 시화·반월 산업단지의 온실가스 배출량 산정 연구)

  • An, Jae-Ho
    • KIEAE Journal
    • /
    • v.11 no.2
    • /
    • pp.67-74
    • /
    • 2011
  • Recently environmental regulations like the Kyoto Protocol, adopted in 1997, required the reduction of the greenhouse gas of 5.2% up to 1990's emissions and 13th General Assembly in 2007, held in Bali of India, have agreed to duty reduction even in developing countries in 2013. Korean government needs research on climate change and greenhouse gas management, such as carbon emissions calculation system and the introduction of greenhouse gas reduction program. Using Top-Down approach with method of IPCC, greenhouse gas emissions from energy, transportation, agriculture, land use and forest, and waste was calculated. Total amount from Shiheung-City in 2007 was about 3,299.581 tons of greenhouse gas $CO_2$. By sectors, the total greenhouse gas emissions in the energy sector mostly accounted for 78 percent, 12 percent from transportation, 6 percent of waste, the landuse/forest sector, 4% of the greenhouse gas emissions. Approximately 5,401,618 tons of the greenhouse gas $CO_2$ was total amount from Ansan-City in 2007. The share of energy sector greenhouse gas emissions was the highest portion of 79 % and 14 percent of transportation, 4% from the waste sector, 3 % from landuse/forest sector.

Characteristics of NOx Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho, Eun-Seong;Chung, Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2303-2309
    • /
    • 2004
  • Flue gas recirculation (FGR) is a method widely adopted to control NOx in combustion system. The recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance a much improved reduction in NOx per unit mass of recirculated gas, as compared to the conventional FGR in air. In the present study, the effect of FGR/FIR methods on NOx reduction in turbulent swirl flames by using N$_2$ and CO$_2$ as diluent gases to simulate flue gases. Results show that CO$_2$ dilution is more effective in NO reduction because of large temperature drop due to the larger specific heat of CO$_2$ compared to N$_2$ and FIR is more effective to reduce NO emission than FGR when the same recirculation ratio of dilution gas is used.

An Application of CDM Project for Greenhouse Gas Reduction Activities in the Wastewater Treatment Systems (하수처리시스템 온실가스 저감활동에 대한 CDM 사업 적용에 관한 연구)

  • Kwak, In-Ho;Hwang, Young-Woo;Jo, Hyun-Jung;Park, Kwang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.319-332
    • /
    • 2010
  • In general, wastewater treatment systems consume high-energy consumption depending on operation characteristics of the facilities. Therefore, greenhouse gas(GHG) reduction activities that are application of digestion gas, induction of renewable energy etc. are conducted to reduce energy consumption and to increase energy independence ratio. In this study, GHG reduction in wastewater treatment system identified, searched application of Clean Development mechanism(CDM) approved methodology. If the methodologies apply to GHG reduction activities such as application of digestion gas, heat pump system using the wastewater as heat source, hydropower using the methodology determined CDM applicability, otherwise through several assumptions calculated expectable GHG reduction emissions and determined CDM applicability. As a result, the order of calculated GHG reduction emission showed that collected and energy generation of digestion gas is 66,775 $tCO_2$/yr, gas engine cogeneration system is 8,182 $tCO_2$/yr, heat pump system using the wastewater as a heat source is 72,715 $tCO_2$/yr, and hydropower is 561 $tCO_2$/yr. Consequently, the order of calculated Certified Emission Reductions(CERs) benefit showed that heat pump system using the wastewater, as a heat source is 1,381 million won/yr was estimated as the highest, followed by a collected and energy generation of digestion gas is 1,268 million won/yr.

Methodology Developments based on CO2 Emission Information from Construction Equipment for Greenhouse Gas Regulations (온실가스 규제에 대비한 건설장비 이산화탄소 배출량정보 활용방법론 개발)

  • Go, Jee-Eun;Lee, Jin-Woo;Chae, Yoon-Byung;Han, Seungwoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.35-36
    • /
    • 2018
  • According to the nation's greenhouse gas emission statistics, greenhouse gas emissions have been stiffly increasing. Accordingly, the importance of CO2 reduction is more getting focused over the world. This trend makes the construction equipment be considered as a major target of reduction due to the large volume of emission. This study suggests the feasible methodology for estimating CO2 emission from construction equipment and for being easily applied on the job sites. The methodology is based on the collection from the segmented CO2 emission information of construction equipment. This study allows site personnels to estimate the total amount of CO2 and to take appropriate actions for reasching the environmental regulations.

  • PDF

A Study on the Optimum Tandem Welding Torch Distance for the Reduction of CO2 Shielding Gas Consumption (Tandem 용접 CO2 보호가스 사용량 감소를 위한 최적 토치 극간거리에 대한 연구)

  • Lee, Jun-Yong;Kim, Ill-Soo;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.294-301
    • /
    • 2012
  • Shipbuilding industry has used a lot of $CO_2$ gas as a shielding gas for arc welding and thus, development of welding equipment which can reduce the amount of $CO_2$ gas is requested widely. Therefore, this study is focused on the examination of optimum welding torch distance of Tandem welding system as a fundamental study for the optimum shape design of torch nozzle. $CO_2$ shielding gas distribution and welding bead shape formation by the torch distance are examined. Results show that according to the torch distance variation, most effective shielding gas layer can be formed and quantitative determination of the optimum torch distance can result in the reduction of $CO_2$ shielding gas consumption.