• Title/Summary/Keyword: $CO_2$ Emission Calculation

Search Result 109, Processing Time 0.024 seconds

Development of Classification Method for Anthracite and CO2 Emission Factor to Improve the Quality of National GHG Inventory (국가 온실가스 인벤토리 품질 향상을 위한 무연탄 분류 방법 및 배출계수 개발)

  • Kim, Seungjin;Lee, Jeongwoo;Lee, Seehyung;Sa, Jae-Hwan;Choi, Bong-Suk;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.1
    • /
    • pp.27-39
    • /
    • 2013
  • In this study, the anthracite coal being used as fuel in Korea were classified into different types. These types include the domestically produced anthracite, imported anthracite used as raw material, and imported anthracite used as fuel. Each of the calorific values and greenhouse gas emission factors were calculated. The calculation of greenhouse gas emission factors resulted in the domestically produced anthracite as $111,477{\pm}4,508kg\;CO_2/TJ$, the imported anthracite used as raw material as $108,358{\pm}4,033kg\;CO_2/TJ$, and anthracite used as fuel was displayed as $103,927{\pm}8,367kg\;CO_2/TJ$. Additionally, the amount of greenhouse gas emission based on these calculated emission factors was displayed as $6,216,942ton\;CO_2$, which resulted as 12.7% lower than the green house gas emission amount which was calculated without distinguishing anthracite coal in details. Therefore, collecting activity data through a detailed classification of anthracites facilitate a more accurate calculation of greenhouse gas emission amount compared to collecting activity data through combination. Furthermore, since the anthracite coal used domestically possesses characteristics differing from the anthracite coal proposed by the IPCC, anthracite coal should be classified for each purpose and calculated for the improvement of the national greenhouse gas inventory.

Regional allocation of carbon emissions in China based on zero sum gains data envelopment analysis model

  • Wen, Lei;Zhang, Er nv
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.91-98
    • /
    • 2016
  • Along with China's increasing share in global total $CO_2$ emissions, there is a necessity for China to shoulder large emission-mitigating responsibility. The appropriate allocation of $CO_2$ emission quotas can build up a solid foundation for future emissions trading. In views of originality, an optimized approach to determine $CO_2$ emissions allocation efficiency based on the zero sum gains data envelopment analysis (ZSG-DEA) method is proposed. This paper uses a non-radial ZSG-DEA model to allocate $CO_2$ emissions between different Chinese provinces by 2020 and treats $CO_2$ as the undesirable output variable. Through the calculation of efficiency allocation amounts of provincial $CO_2$ emissions, all provinces are on the ZSG-DEA efficiency frontier. The allocation results indicate that the cumulative optimal amounts of $CO_2$ emissions in 2020 were higher than the actual amounts in 13 provinces, and lower in other 17 provinces, and show that different provinces have to shoulder different mitigation burdens in terms of emission reduction.

A Study on $CO_2$ Emission Estimation linked Port Action (항만 연계활동에 기초한 이산화탄소 배출량 추정)

  • Kim, Hwan-Seong;Jo, Min-Ji
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.173-174
    • /
    • 2010
  • As the quantity of goods transported, port industry and inland transport industry have developing to transport 630million ton goods annually. And the inland transport industry consists of ground transport for almost 80% of total transported goods. But, ground transport causes some serious problems especially the emission of greenhouse gases from trucks. According to issue "global warming", many regulations and agreements with countries in the world are becoming necessary and it is being fulfilled now. It is sure that Korea will have duty to reduce CO2 emission from 2013. Thus inland transport must cut off CO2 emission level. Therefore this paper will address that the calculation of CO2 emission under route of transportation container from six major container ports in Korea. And then, it will predict CO2 emission of inland transport industry according to increasing container traffic rate at ports.

  • PDF

Property Analysis of Municipal Solid Waste and Estimation of CO2 Emissions from Waste Incinerators (생활폐기물 특성 분석 및 소각시설의 CO2 배출량 평가)

  • Kim, Byung-Soon;Kim, Shin-Do;Kim, Chang-Hwan;Lee, Tae-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.657-665
    • /
    • 2010
  • Carbon dioxide ($CO_2$) is known to be a major greenhouse gas partially emitted from waste combustion facilities. According to the greenhouse gas emission inventory in Korea, the quantity of the gas emitted from waste sector in 2005 represents approximately 2.5 percent of all domestic greenhouse gas emission. Currently, the emission rate of greenhouse gas from the waste sector is relatively constant partly because of both the reduced waste disposal in landfills and the increased amounts of waste materials for recycling. However, the greenhouse gas emission rate in waste sectors is anticipated to continually increase, mainly due to increased incineration of solid waste. The objective of this study was to analyze the property of Municipal Solid Waste (MSW) and estimate $CO_2$ emissions from domestic MSW incineration facilities. The $CO_2$ emission rates obtained from the facilities were surveyed, along with other two methods, including Tier 2a based on 2006 IPCC Guideline default emission factor and Tier 3 based on facility specific value. The $CO_2$ emission rates were calculated by using $CO_2$ concentrations and gas flows measured from the stacks. Other parameters such as waste composition, dry matter content, carbon content, oxidation coefficient of waste were included for the calculation. The $CO_2$ average emission rate by the Tier 2a was 34,545 ton/y, while Tier 3 was 31,066 ton/y. Based on this study, we conclude that Tier 2a was overestimated by 11.2 percent for the $CO_2$ emission observed by Tier 3. Further study is still needed to determine accurate $CO_2$ emission rates from municipal solid waste incineration facilities and other various combustion facilities by obtaining country-specific emission factor, rather than relying on IPCC default emission factor.

Establishment of CO2 Emission Estimation BIM Library for Steel Structures (철골조 건물의 탄소배출량 산정을 위한 BIM 라이브러리 구축)

  • Lee, Jae-Cheol;Jung, Jong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3169-3175
    • /
    • 2014
  • In this paper, we have established the procedures for $CO_2$ emission estimation BIM libraries by using the material takeoff function that BIM tools fundamentally provide, and verified its availability by applying to steel structures. The BIM library set-up procedures were made up of $CO_2$ emission coefficients and parameter extraction, project unit setting, parameter setting, and $CO_2$ emission quantity calculation formula set-up. We used Revit Architecture 2013 as BIM tool, and established the steel members' family libraries as BIM libraries. It is possible to calculate the $CO_2$ emission quantity by following the proposed BIM library set-up procedures, and users have only to input the $CO_2$ emission coefficients and unit weights of steel members being used. We expect that the results contribute to practical use of BIM in field, and vitalizations of the eco-friendly construction.

A study on the calculation of greenhouse gas emission in industry complex of Shiwha-banwol using the method of IPCC (IPCC 방법을 이용한 시화·반월 산업단지의 온실가스 배출량 산정 연구)

  • An, Jae-Ho
    • KIEAE Journal
    • /
    • v.11 no.2
    • /
    • pp.67-74
    • /
    • 2011
  • Recently environmental regulations like the Kyoto Protocol, adopted in 1997, required the reduction of the greenhouse gas of 5.2% up to 1990's emissions and 13th General Assembly in 2007, held in Bali of India, have agreed to duty reduction even in developing countries in 2013. Korean government needs research on climate change and greenhouse gas management, such as carbon emissions calculation system and the introduction of greenhouse gas reduction program. Using Top-Down approach with method of IPCC, greenhouse gas emissions from energy, transportation, agriculture, land use and forest, and waste was calculated. Total amount from Shiheung-City in 2007 was about 3,299.581 tons of greenhouse gas $CO_2$. By sectors, the total greenhouse gas emissions in the energy sector mostly accounted for 78 percent, 12 percent from transportation, 6 percent of waste, the landuse/forest sector, 4% of the greenhouse gas emissions. Approximately 5,401,618 tons of the greenhouse gas $CO_2$ was total amount from Ansan-City in 2007. The share of energy sector greenhouse gas emissions was the highest portion of 79 % and 14 percent of transportation, 4% from the waste sector, 3 % from landuse/forest sector.

Calculation of Carbon Dioxide Emissions by South Korea's Fishery Industry (한국 수산업분야 어업용 연소연료의 사용실태와 CO2 배출량의 산정)

  • Lee, Dong-Woo;Lee, Jae-Bong;Kim, Yeong-Hye;Jung, Suk-Geun;Lee, Hae-Won;Hong, Byung-Kyu;Son, Myong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.1
    • /
    • pp.78-82
    • /
    • 2010
  • Vessel numbers and fuel consumption by South Korea's offshore and coastal fisheries have continuously declined since 2000. Using the 2006 Intergovernmental Panel on Climate Change Guidelines, $CO_2$ emissions by South Korea's fishery industry (fishing and aquaculture, excluding deep-sea fishing) were calculated by the default $ CO_2$ emission factor and fuel consumption by fuel type, Emission of $CO_2$ was estimated to be 3.22 million $tCO_2$/year in 2007 for fisheries (excluding deep-sea fishing); when including deep-sea fishing, the estimated value increased to 4.11 million $tCO_2$/year. Fuel consumption per tonne of fishery production was 498 L, and the amount of $CO_2$ emission per tonne of production was 1.62 $tCO_2$. To calculate $CO_2$ emission more exactly, we must develop a system to compile energy balance statistics and introduce life-cycle assessment for the fishery industry.

Empirical Analysis of the Effect of EU ETS on the CO2 Emission (유럽공동체 배출권거래제 도입 효과에 대한 실증분석)

  • Kim, Hyun;Lee, Gwanghoon
    • Environmental and Resource Economics Review
    • /
    • v.19 no.4
    • /
    • pp.875-896
    • /
    • 2010
  • Using the difference in differences (DID) estimation method, this paper analyzes the effect of European Union's Emission Trading Scheme (EU ETS) on the reduction of per capita $CO_2$ emission among the twenty five participating countries. For this, the panel dataset of forty two European countries for the period 1990~2007 is constructed. Special attention is paid to the bias of the standard errors in the DID estimation due to the presence of serial correlation in the error terms. The results shows quite a robust effect of EU ETS on the reduction of per capita $CO_2$ emission among the participating countries regardless of the calculation methods of standard errors. The results also shows that the increased implicit tax rate on energy has a robust effect on the reduction of per capita $CO_2$ emission. On the contrary, the estimation results regarding the effects of per capita GDP and population density on the per capita $CO_2$ emission seem inconsistent. In particular, the environmental Kuznets curve is not statistically supported with the use of robust standard errors.

  • PDF

Comparison of Direct and Indirect $CO_2$ Emission in Provincial and Metropolitan City Governments in Korea: Focused on Energy Consumption (우리나라 광역지방자치단체의 직접 및 간접 $CO_2$ 배출량의 비교 연구: 에너지 부문을 중심으로)

  • Kim, Jun-Beum;Chung, Jin-Wook;Suh, Sang-Won;Kim, Sang-Hyoun;Park, Hung-Suck
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.874-885
    • /
    • 2011
  • In this study, the urban $CO_2$ emission based on energy consumption (Coal, Petroleum, Electricity, and City Gas) in 16 provincial and metropolitan city governments in South Korea was evaluated. For calculation of the urban $CO_2$ emission, direct and indirect emissions were considered. Direct emissions refer to generation of greenhouse gas (GHG) on-site from the energy consumption. Indirect emissions refer to the use of resources or goods that discharge GHG emissions during energy production. The total GHG emission was 497,083 thousand ton $CO_2eq.$ in 2007. In the indirect GHG emission, about 240,388 thousand ton $CO_2eq.$ was occurred, as 48% of total GHG emission. About 256,694 thousand ton $CO_2eq.$ (52% of total GHG emissions) was produced in the direct GHG emission. This amount shows 13% difference with 439,698 thousand ton $CO_2eq.$ which is total national GHG emission data using current calculation method. Local metropolitan governments have to try to get accuracy and reliability for quantifying their GHG emission. Therefore, it is necessary to develop and use Korean emission factors than using the IPCC (Intergovernmental Panel on Climate Change) emission factors. The method considering indirect and direct GHG emission, which is suggested in this study, should be considered and compared with previous studies.

Comparison of Greenhouse Gas Emissions from Road Transportation in Local Cities/Counties of Gyeonggi Province by Calculation Methodologies (도로수송부문의 온실가스 배출량 산정방법에 따른 경기도 시·군별 배출량 비교)

  • Lee, Tae-Jung;Kim, Ki-Dong;Jung, Won-Seok;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.4
    • /
    • pp.454-465
    • /
    • 2012
  • The Korean government decided to reduce 30% of GHG (greenhouse gas) emissions BAU in 2020. Since many efforts to reduce emissions are urgently needed in Korea, the central administrative organization urges local governments to establish their own reduction schemes. Among many GHG emission categories, the emission from mobile source in Gyeonggi Province accounted for 25.3% of total emissions in 2007 and further the emission from road transport sector occupied the most dominant portion in this transportation category. The objective of this study was to compare 3 types of GHG emissions from road transport sector in 31 local cities/counties of Gyeonggi Province, which have been estimated by Tier 1, Tier 2, and Tier 3 methodologies. As results, the GHG emission rates by the Tier 1 and Tier 2 were $19,991kt-CO_2\;Eq/yr$ and $18,511kt-CO_2\;Eq/yr$, respectively. On the other hand, the emission rate by Tier 3 excluding a branch road emission portion was $18,051kt-CO_2\;Eq/yr$. In addition, the total emission rate including all the main and branch road portions in Gyeonggi Province was $24,152kt-CO_2\;Eq/yr$, which was estimated by a new Tier 3 methodology. Based on this study, we could conclude that Tier 3 is a reasonable methodology than Tier 1 or Tier 2. However, more accurate and less uncertain methodology must be developed by expanding traffic survey areas and adopting a suitable model for traffic volumes.