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1. Introduction

There is a global consensus that climate change is being driven 
by an increase in atmospheric greenhouse gases, most notably 
CO2 emissions. Along with the global climate and environment 
situation becoming more serious, as main element of greenhouse 
gas, CO2 emissions are concerned.

To address this issue, Chinese government proposed targets 
that CO2 emissions per unit gross domestic product (GDP) should 
be cut by 40-45% in 2020 compared to 2005. As a restriction 
index, this target has been included in the future me-
dium-and-long term plans for national economic and social 
development. In order to achieve the goal of carbon emission 
reduction, the choice of carbon dioxide emissions allocation 
method and initial quotas confirmation must be solved as im-
portant topic of research. 

Data envelopment analysis is effective for a non-parametric 
approach. It has been widely used in solving the problem of 
resource allocation. Moreover, DEA-relative models have been 
proposed in the presence of undesirable outputs especially CO2 
emissions. However, dated from the increasing CO2 emissions, 
these models implied a reduction in performance. Thus, these 
existing models are not used to CO2 emissions reallocation on 
account of the assumption of constant total sum. In this respect, 

ZSG-DEA model shows much more priority to deal with 
sum-constant reallocation problem, especially the interactive 
combination with Environment Production Technology. 
Consequently, ZSG environmental production technology allo-
cation model is proposed to equitably and economically distrib-
ute CO2 reduction responsibility among China’s provinces. 
Particularly, the Chinese central government released a new 
regulation guiding the trade of carbon emission quotas in 
December 2014. This paper can help facilitate the im-
plementation of this regulation by allocating the appropriate 
regional CO2 emissions.

From an academic viewpoint, the allocation of CO2 emissions 
has been widespread studied. Holmberg et al. [1] to allocate 
CO2 emissions and fuel costs by using the energy, exergy and 
market. A system and quantitative method is proposed to imple-
ment the "common but differentiated responsibilities" rule of 
distribution of carbon dioxide emissions by Wei et al [2]. Pan 
et al. [3] emphasized “Equitable Access to Sustainable 
Development” for per capita cumulative CO2 emission rights 
allocation schemes. Morini et al. [4] raised a method for the 
optimal demand allocation among combined heat and power 
(CHP) and renewable energy systems to minimize the primary 
energy consumption. Hasan et al. [5] presented a benefit-based 
allocation method by using a Shapley value approach. Wang 
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et al. allocated CO2 emission quotas to major countries using 
different regimes for a sample period of 2011-2100 [6]. Levihn 
compared different allocation methods and discusses both ad-
vantages and disadvantages of each method [7]. There are a 
number of papers to use GDP to analyze irrigation future of 
agricultural water management in Africa [8-10].

Different from these previous studies, this paper attempts 
to employ DEA to allocate CO2 emissions. As a non-parametric 
approach, DEA has been widely used in the resource allocation 
problem studied by Fang and Zhang [11]. especially the alloca-
tion problem with a fixed total amount of input or output. 
It is considered that Cook and Kress proposed the first model 
[12], under the DEA framework, that deals with the fixed input 
allocation problem. Cook and Kress’s approach was based on 
output-oriented version of the CCR-DEA model, in which the 
objective of DEA model is to minimize the weighted combination 
of input variables with the constraint. Cook and Zhu extended 
this method to cases [13] that the input-oriented CCR-DEA model 
was utilized. Lin R. presented several DEA models to solve 
the same fixed input resources allocation problem [14]. Aparicio 
and Monge et al. also conducted research on such problems 
of the emission permits allocation [15]. In their study, a central-
ized point of view was adopted in DEA method to correspond 
to the three objectives: maximizing aggregated desirable pro-
duction, minimizing the consumption of input resources, and 
minimizing undesirable total emissions. 

By introducing the zero sum game concepts in to the DEA 
method, Gomes and Lins developed a ZSG-DEA model which 
was used to reallocate CO2 emissions allowance among the 
Annex I parties and Non-Annex I countries of Kyoto Protocol. 
[16] Also by using ZSG-DEA model, Serrao proposed a model 
to efficiently reallocate agricultural greenhouse gas emissions 
among 15 EU countries [17]. Since the DEA based method has 
been successfully and effectively applied in the resource alloca-
tion problem, in this paper we choose a DEA based approach 
for the CO2 emissions allowance allocation over the provinces 
in China.

One of the key issues related to the CO2 emissions allowance 
allocation under the DEA framework is how to deal with the 
CO2 should be be minimized. There are several approaches 
to modelling such types of undesirable outputs in the DEA 
context, for instance, dealing the undesirable outputs through 
a weak disposability reference technology by assuming the un-
desirable outputs and desirable outputs are generated in the 
same production process proposed by Färe et al and Arita Duasa 
et al [18-19]. Feng G, Färe et al and Lozano and Gutierrez applying 
the directional distance function to simultaneously increase 
the desirable outputs and decrease the undesirable outputs 
[20-22]. Cheng and Liu [23] translating the undesirable outputs 
into desirable outputs mathematically under the classification 
in variance and treating the undesirable outputs as inputs by 
Zhou et al and Zhang et al [24-25]. Furthermore, Sueyoshi et 
al and Goto proposed a DEA model using the range adjusted 
measure which combined the undesirable and desirable outputs 
in a unified treatment [26-28]. Since the regional CO2 emissions 
allowance is a sub-divided quota of the total emission control 
target of China, which can essentially be considered as a dis-

tribution of the resource to each region, the approach proposed 
in this paper therefore realistically treats the undesirable outputs 
of the CO2 emissions allowance as inputs. 

2. Materials and Methods

2.1. CCR-DEA Model and Environmental ZSG-DEA

Assuming that there are G decision making units (DMUs) which 
convert s inputs into t outputs. Let   denote the i-th input 
and   denote the j-th output for DMUg. The classic out-
put-oriented CCR model which was proposed by Charnes et 
al. [29] for calculating the technical efficiency of DMUg can 
be expressed in Eq. (1).

Max 

  
  



  ≤     ⋯ 


  



  ≥      ⋯ 

 ≥     ⋯ (1)

Once Eq. (1) is solved, the ZSG-DEA model can be constructed 
by using the efficiency scores derived from Eq. (1). The ZSG-DEA 
model was first proposed by Lins et al. [30] in order to estimate 
the winning efficiency of different countries in Olympics. The 
idea is that the total amount of an input (output) is fixed so that 
a decrease in the input (output) for one DMUcan lead to an increase 
in the input(output) for another DMUg. As discussed by Gomes 
and Lins [16], the output-oriented ZSG-DEA model can finally 
be formulated in Eq. (2).   

Max 

  ≤ 


  
≠



 






  ≤ 

 ≥  for ∀  (2)

Where hp represents expansion factor for DMUp that can be 
calculated from Eq. (1), and  represents expansion factor of 

DMUg evaluated by ZSG-DEA. The ZSG-DEA model has been wide-
ly used for the cases with single input or output variables in 
resource allocation.            

In this paper, we constructed a ZSG-DEA model for CO2 emis-
sion allocation based on the assumption that CO2 emissions 
are weakly disposable. Similar to many previous studies such 
as Zhou et al. [31], we choose capital stock (K), population 
(P) and energy consumption (E) as three inputs, GDP (Y) as 
a single desirable output and CO2 emissions (C) as a single 
undesirable output. Then the macro-production process can 
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be modeled by the following Environmental Production 
Technology exhibiting constant returns to scale:

        
  



  ≤ 


  



  ≤ 


  



  ≤ 


  



  ≤ 


  



  ≤ 

 ≥      ⋯  (3)

The environmental production technology T, also referred to 
as environmental DEA technology, can satisfy both weak dispos-
ability and null-jointness assumptions. The weak disposability 
assumption indicates that it is possible to reduce CO2 emissions 
and GDP proportionally, while the null-jointness assumption im-
plies that removing all the CO2 emissions must be at the cost 
of zero GDP. Based upon Eq. (3), we can easily formulate the 
following undesirable output orientation DEA model for calculating 
the CO2 emission expansion coefficient. This study focuses on 
the CO2 emission allocation and treats CO2 emission as the un-
desirable output, the emission expansion coefficient is the technical 
efficiency in our model, which means a larger expansion coefficient 
reflects higher technical efficiency.

Max 


  



  ≤ 


  



  ≤ 


  



  ≤ 


  



  ≤  


  



  ≤ 

 ≥     ⋯  (4)

With the consideration of research findings in Gomes et al. 
[16] and the basis of environmental DEA technology, this paper 
formulate the ZSG-DEA model in Eq. (5) the total amount of CO2 
emissions for all the DMUs is fixed. Provided that the CO2 emissions 
for DMUg are decreased, the portion reduced by the DMU will 
be allocated to other DMUs, proportional to their actual amounts 
of CO2 emissions. 

Max 

   
  



  
 ≠



 



  



  ≤ 


  



  ≤ 


  



  ≤ 


  



  ≤ 

 ≥     ⋯  (5)

Lins et al. [30] and Gomes and Lins [16] showed that there 
exists a relationship between  and the ZSG-DEA . Following 

Gomes and Lins, we derive the following Eq. (6) for solving  

from : 

 






∉




∈

  



 (6)

where W represents the set of cooperative DMUs with hp higher 
than unity and   . The DMUs belonging to W need 

to decrease their CO2 emissions by 
∈

  , which 

will be allocated to the DMUs that do not belong to W.   

2.2. Grey Model

The grey system was proposed by Deng [32]. The grey system 
theory has been successfully applied in many fields such as manage-
ment, economy, engineering, finance, etc. There are three types 
of systems-white, black, and grey. A system is called a white system 
when its information is totally clear. When a system’s information 
is totally unknown, it is called a black system. If a system’s in-
formation is partially known, then it is called a grey system. The 
grey forecasting model adopts the essential part of the grey system 
theory. The Grey Model GM (1,1) grey forecasting model can be 
used in circumstances with relatively little data, and it can use 
a first-order differential Eq. to characterize an unknown system. 
So the GM (1,1) grey forecasting model is suitable for forecasting 
the competitive environment where decision makers can reference 
only limited historical data. The GM (1,1) procedure can be sepa-
rated into five steps:

Step 1: Collect original data and build a data sequence. The 

observed original data are defined as   , where  is  th 
sample. The raw sequence of  samples is defined as:

     ⋯    

    ⋯  (7)
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Step 2: Transform the original data sequence into a new 

sequence. A new sequence   generated by the accumulated 
generating operation (AGO), where

     ⋯  (8)

The   is derived as follows:

 
  



     ⋯ (9)

Step 3: Build a first-order differential Eq. of the GM (1,1) model. 
By transforming the original data sequence into a first-order differ-
ential Eq., the time series can be approximated by an exponential 
function. The grey differential model is obtained as





   (10)

where a is a developing coefficient and b represents the grey 
input. According to Eqs. (8) and (10), the parameters a and b can be 

estimated by the least-squares method. Parameter   is represented as

    (11)

Where 

 











 

 
 

 

      ⋯  (12)

The background value for formula (12) is represented as

  


      ⋯  (13)

And

 


















(14)

Step 4: By substituting the estimated parameters obtained from 
Eqs. (11) to (14) into

Eq. (10), we get the grey forecasting predictor as follows:




    

   



where     ⋯  (15)

Step 5: Check the process: after a new sample is obtained, 
Steps 1 to 4 are followed to predict the behavior of the process 
until unusual conditions occur. If a new predicted point is plotted 

beyond the upper or lower limits, it means that the process may 
be out-of-control and that an investigation will be started; otherwise, 
the process continues to be monitored.

3. Results and Discussion

3.1. Variables and Data Description

We apply the ZSG-DEA model by using Eqs. (4)-(6) to investigate 
how to efficiently allocate China's CO2 emissions to different prov-
inces by 2020. All data covering the period of 2004–2012 were 
obtained from the Chinese Statistical Yearbook. Data on capital 
stock were obtained by using the perpetual inventory method 
described in Shan [33], while data on other variables came from 
various issues of China's Energy Statistics Yearbooks and China 
Statistical Yearbooks. 

The data on CO2 emissions at province level are not available. 
With reference to the 2006 IPCC National Greenhouse Gas Inventories, 
energy-related CO2 emissions can be calculated as Eq. (16), 

 
  



 ×  × 


(16)

where  denotes total CO2 emissions,  is carbon emission 

coefficient of the  kind of primary energy,   refers to the   

kind of primary energy consumption, and 44/12 is ratio of molecular 
weights of CO2 and  . Primary energy carbon emission coefficients 
are recommended by the Energy Research Institute of Chinese 
National Development and Reform Commission. Coefficients for 
coal, fossil oil, natural gas, and nonfossil energy are 0.7476, 0.5825, 
0.4435 and 0 respectively (ton C/ton standard coal). 

The prediction of China's economic growth, capital stock, pop-
ulation, energy consumption and CO2 emissions by 2020 are given 
as follows. 

First of all, according to the research of the Development Research 
Center of the State Council of China (Wang, 2005) [34] and the 
EIA (2009), annual GDP growth rate of China in 2011–2020 is 5.3% 
and 6.4% (in the low economic growth scenarios) and 7.4% and 
8% (in the high economic growth scenarios) respectively. Here, 
annual GDP growth rate during 2010–2020 is assumed as 8%. 

Secondly, according to the research of the United Nations 
Department of Economic and Social Affairs, China’s population 
by 2020 will be 1.43 billion (UNDESA, 2009) [35]. We use this 
population projection. 

Thirdly, according to the research of physical capital stock grow 
at average rate of 14% and 10. 96% of the depreciation in china 
during 2013-2020 proposed by Lin [36], China’s capital stock by 
2020 is calculated based on the perpetual inventory method and 
to adjust in 1952.

Furthermore, energy consumption forecasting model is a small 
sample data trend modeling problem. Grey forecasting model has 
a strong ability to deal with the information of small sample. 
We can directly use GM (1,1) model to predict for energy con-
sumption in China during 2004-2012 and analysis error of historical 
actual data and predicted value.
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As can be seen in Table 1, the error is below 5%. The forecasted 
results show that the method is feasible and the forecasted results 
well match the actual measured data. Thus, energy consumption 
of each province is calculated using the gray forecast in 2020.

Finally, we take 2004-2012 data of all provinces except Tibet 
as samples, using GM (1,1) model to forecast carbon dioxide emis-
sions of 30 provinces in China in 2004-2012. By comparing the 
predicted results with real numerical values from Table 2, we 
can reach that the prediction of carbon dioxide emissions which 
uses the GM (1,1) model is credibility. Thus, the carbon dioxide 
emissions of 30 provinces by 2020 can be obtained.

Table 3 lists the descriptive statistical results of the five variables 
in China by 2020. Unfortunately, due to the lack of data, Tibet, 
Hong Kong, Macau and Taiwan were not included in this study, 
while other 30 provinces, autonomous regions and provincial mu-
nicipalities (such as Beijing, Shanghai, Tianjin and Chongqing) 
were included.

3.2. Empirical Results

We first calculate the CO2 emission  scores by using Eq. (4), 

which is listed in Table 4. It is clear that in 2020 several less 
developed provinces, e.g. Hebei, Shanxi, Inner Mongolia, Liaoning 
and Ningxia had  score of unity, indicating that the amounts 

of CO2 emissions in these provinces were too large to be further 
expanded. On the contrary, their CO2 emissions need to be reduced 
in order to keep consistency with their current input and output 

levels. Table 4 also lists that some provinces or provincial leveled 
municipalities (such as Beijing and Hainan) had larger  scores, 

which could be explained by their higher CO2 emission efficiency. 
Most of the province's expansion coefficient is 1, which means 
that the level of carbon emissions in most of the provinces in 
China is relatively high. We need to pay attention to it in the 
future development process and improve at the harmonious devel-
opment of the energy, economic and social development. 

We further apply the ZSG-DEA model to derive the ZSG-DEA 
 scores by using Eq. (6) and the optimal amounts of CO2 emissions 

foreach province. Table 5 lists the results for the year 2020, which 
suggests that provinces with  higher than 1 can be allowed 

increasing their CO2 emissions so as to reach ZSG-DEA frontier. 
For example, in 2020 Beijing could be allowed increasing CO2 
emissions by 24.13 million tons. On the other hand, those provinces 
with  lower than unity should reduce their CO2 emissions 

in order to reach ZSG-DEA frontier. For instance, Hebei province 
had to reduce 35.85 million tons of CO2 emissions. Based on the 
previous analysis we find that when total amount of CO2 emission 
in China remains no changes, all the provinces become more effi-
cient after appropriate reallocation. 

We also present our CO2 emission allocation results in different 
regions in Fig. 1, showing that the comparison between the results 
of the ZSG-CO2 emission and Initial CO2 emission in 2020. There 
are 13 provinces in the allocation of ZSG exceeded the actual 
amount of emissions, while other 17 provinces of ZSG allocation 

Table 1. The Energy Consumption Prediction of China in 2004–2012
Year 2004 2005 2006 2007 2008 2009 2010 2011 2012

Actual value 231452.00 263458.00 290537.00 318974.00 337703.00 357238.00 389511.00 422745.00 443216.00
Predicted value 238441.85 272231.15 298526.77 328192.35 352460.62 370170.02 401819.55 433863.19 456689.77

Error (%) 3.02 3.33 2.75 2.89 4.37 3.62 3.16 2.63 3.04
Note: Unit:104 tons of standard coal

Table 2. The Error Rate of Carbon Dioxide Emissions for 30 Provinces in 2004–2012
Province Error (%) Province Error (%) Province Error (%) 
Beijing 3.33 Zhejiang 2.82 Hainan 10.1 
Tianjin 3.94 Anhui 3.92 Chongqing 6.16 
 Hebei 3.94 Fujian 1.85 Si chuan 2.77
Shanxi 4.11 Jiangxi 3.96 Guizhou 3.77

Inner Mongolia 6.90 Shandong 6.56 Yunnan 5.88
Liaoning 1.61 Henan 6.57 Shannxi 2.44

Jilin 2.09 Hubei 2.89 Gansu 3.56
Heilongjiang 1.22 Hunan 4.97 Qinghai 3.95

Shanghai 2.11 Guangdong 2.13 Ningxia 6.92 
Jiangsu 5.2 Guangxi 4.32 Xinjiang 2.17 

Table 3. Descriptive Statistics of Input and Output Variables for 30 Provinces by 2020
Variable Unit Mean Standard deviation Minimum Maximum

GDP 108 yuan 36191.95 26188.45 3636.84 107070.81
Capital stock 108 yuan 24230.91 20012.63 1207.03 73608.97
Population 104 persons 4706.73 2800.87 603.64 11116.18

Energy coconsumption 104 tce 27317.20 15476.39 3839.00 64084.00
CO2 emission 106 tons 593.69 354.45 78.45 1450.99
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amount is less than the actual emissions. In the 13 provinces, 
Guangdong, Sichuan and Chongqing have been promoted and 
made large utilization of hydropower, nuclear power and other 
clean energy. While Heilongjiang, Qinghai and Xinjiang are major 
agricultural provinces, the other 17 provinces are mostly based 
on industry. This phenomenon shows a high instability and un-

certainty in the future.
From the perspective of economics analysis, some provinces 

are facing higher pressures on CO2 emission reduction. If reducing 
CO2 emissions only from the perspective of reducing energy con-
sumption blindly, economic development and people's living fields 
are inevitably deteriorated. It is not rational to limit their energy 

Table 4. CO2 Emission Coefficient of Expansion in China by 2020

Province  Province  Province 

Beijing 1.187 Zhejiang 1.034 Hainan 1.268
Tianjin 1.007 Anhui 1.000 Chongqing 1.049
Hebei 1.000 Fujian 1.000 Si chuan 1.080
Shanxi 1.000 Jiangxi 1.000 Guizhou 1.000

Inner Mongolia 1.000 Shandong 1.047 Yunnan 1.000
Liaoning 1.000 Henan 1.009 Shanxi 1.081

Jilin 1.056 Hubei 1.000 Gansu 1.090
Heilongjiang 1.074 Hunan 1.000 Qinghai 1.135

Shanghai 1.000 Guangdong 1.045 Ningxia 1.000
Jiangsu 1.000 Guangxi 1.000 Xinjiang 1.153

Table 5. ZSG Coefficient of Expansion and ZSG-CO2 Emission in China by 2020

Province Initial CO2 emission (million tce)  ZSG-CO2  emission (million tce) Adjustment

Beijing 157.58 1.153 181.71 24.13
Tianjin 284.75 0.978 278.57 -6.18
Hebei 1257.18 0.971 1221.33 -35.85
Shanxi 901.63 0.971 875.92 -25.71

Inner Mongolia 1162.69 0.971 1129.54 -33.15
Liaoning 990.06 0.971 961.83 -28.23

Jilin 432.4 1.026 443.59 11.19
Heilongjiang 480.73 1.043 501.58 20.85

Shanghai 337.06 0.971 327.45 -9.61
Jiangsu 1044.92 0.971 1015.12 -29.80

Zhejiang 566.45 1.005 569.01 2.56
Anhui 507.12 0.971 492.66 -14.46
Fujian 406.68 0.971 395.08 -11.60
Jiangxi 308.57 0.971 299.77 -8.80

Shandong 1450.99 1.017 1475.87 24.88
Henan 1044.92 0.980 1024.26 -20.66
Hubei 761.97 0.971 740.24 -21.73
Hunan 459.96 0.971 446.84 -13.12

Guangdong 1004.51 1.015 1019.78 15.27
Guangxi 423.27 0.971 411.20 -12.07
Hainan 112.21 1.232 138.23 26.02

Chongqing 318.04 1.019 324.11 6.07
Sichuan 552.29 1.049 579.46 27.17
Guizhou 361.98 0.971 351.66 -10.32
Yunnan 385.56 0.971 374.57 -10.99
Shanxi 726.69 1.050 763.15 36.46
Gansu 315.21 1.059 333.78 18.57

Qinghai 78.45 1.103 86.50 8.05
Ningxia 311.36 0.971 302.48 -8.88
Xinjiang 665.41 1.120 745.34 79.93

Total 17810.64 - 17810.64 0.00
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Fig. 1. Adjustment process of regional CO2 emissions allowance.

consumption or even cut energy supply to the general public in 
order to achieve the national emission reduction targets. Therefore, 
efforts should focus on how to optimize local energy structure 
and promote energy saving in the whole societies, especially in 
the local industries. Renewable or cleaner energy sources, such 
as natural gas, wind power, solar power, and geothermal power, 
should be fully supported by considering the local energy 
endowments. Also, innovative efforts, such as eco design, energy 
audits, cleaner production, and industrial symbiosis, should be 
initiated especially in the local industries. In addition, economic 
instruments, such as carbon trading, carbon tax, carbon cap, should 
be applied so that provinces with more reduction potentials have 
adequate drivers to facilitate their carbon reduction efforts, while 
funds can be collected for supporting related research & develop-
ment activities. 

4. Conclusions

Along with China’s status of being the greatest energy consumer 
and CO2 emitter in the world, there is a huge necessity for China 
to achieve emission-cutting target through regional allocation of 
emission allowance equally. This paper developed a non-radial 
DEA model to measure CO2 emissions to measure technical effi-
ciency (the CO2 emission expansion coefficient). The definition 
of technical efficiency was introduced in the methodology section. 
We calculate the technical efficiency through Eq. (4) and construct 
efficient allocation mechanism through Eqs. (5) and (6). After the 
ZSG allocation, every DMU's CO2 emission is on the ZSG frontier, 
indicating the overall “Pareto Optimality”. We treat CO2 emission 
as one undesirable output to modify previous method in which 
CO2 emissions are treated as the input variable.  

After that, we employ empirical analysis to quantify the efficient 
allocation of CO2 emissions between different provinces using 
China's provincial data for a sample in 2020. Our results show 
that the actual CO2 emissions in some provinces (especially those 
energy-abundant provinces) were higher than their maximal CO2 
emission allowances calculated from the ZSG-DEA model, indicat-
ing that these provinces are facing great pressures on CO2 emission 

reduction. Our results have a certain strategic significance for 
policy making. The level of ZSG-CO2 emissions may be used as 
an indicator for monitoring the harmony between CO2 emissions 
and other factors such as capital investment and economic 
development. 

The inconsistency between ZSG-CO2 emissions and the actual 
CO2 emissions in different regions shows that regions react quite 
differently to this “dilemma” problem (to achieve both economic 
development and energy conservation and emission reduction). 
In order to achieve the proposed national emission reduction tar-
gets, different regions should collaborate through innovative ef-
forts, such as the use of effective economic instruments, capacity 
building and technology transfer.

The conclusion drawn by this study is important for the govern-
ment to adopt relative strategies and enrich the low-carbon-econo-
my system in China. However, the research is still preliminary 
and worthy of further study, such as method improvement, in-depth 
analysis of variable relationship.
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