• Title/Summary/Keyword: $CO_2$ CONCENTRATION

Search Result 5,279, Processing Time 0.039 seconds

Effect of Modified Atmosphere Packaging on Quality Preservation of Rice Cake (Ddukgukdduk) (떡국 떡의 품질유지에 미치는 변형기체포장(MAP) 효과)

  • Jung, Soo Yeon;An, Duck Soon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • Packages of different atmospheres (air (control), 100% CO2, vacuum, and vacuum + O2 absorber) were prepared for 0.4 kg rice cake (ddukgukdduk) using gas-barrier plastic film and stored at 10℃ for 11 days. The stored products were evaluated in their packages atmosphere, total aerobic bacteria, yeast and molds, texture and sensory quality during storage period. In the air package, the O2 concentration decreased from initial 21% to 16% on storage 4 days and the CO2 concentration increased to 23% on storage of 11 days, which resulted from the growth of microorganisms. CO2 concentration decreased from initial 98% to 36% on storage 11 days in the 100% CO2 package. It is reasoned that CO2 was dissolved into the product reducing the volume of the package. Vacuum and vacuum +O2 absorber package maintained shrunk vacuum condition until 11 days of storage. Total aerobic bacteria count increased significantly in the control package (6.41 log (cfu/g) after 11 days) compared to the 100% CO2 package (4.96 log (cfu/g) after 11 days). Yeast and molds were 6.66 in control package, 3.43 in 100% CO2 package, 4.66 in vacuum package, and 3.78 in vacuum + O2 absorber package after 11 days. There was no significant difference between control and the other treatments for the texture of the stored products. Sensory quality was the worst in control package on the storage of 8 days. All treatment groups except control improved the quality preservation, but vacuum and vacuum + O2 absorber packages suffered from cracking of the product. Thus 100% CO2 flushing is suggested as a desired packaging condition.

Hydrogen Production for PEMFC Application in Plasma Reforming System (PEMFC용 플라즈마 개질 시스템의 수소 생산)

  • Yang, Yoon Cheol;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1002-1007
    • /
    • 2008
  • The purpose of this paper studied the optimal hydrogen production condition of plasma reforming system to operate the PEMFC. Plasma reforming reactor used with Ni catalyst reactor at the same time, So $H_2$ concentration increased. Also the WGS and PrOx reactor were designed to remove CO concentration under 10 ppm, because CO has effect on catalyst poisoning of PEMFC. The maximum $H_2$ production condition in plasma reforming system was S/C ratio 3.2, $CH_4$ flow rate 2.0 L/min, catalytic reactor temperature $700{\pm}5^{\circ}C$ and input power 900 W. At this time, the concentration of produced syngas was $H_2$ 70.2%, CO 7.5%, $CO_2$ 16.2%,$CH_4$ 1.8%. The hydrogen yield, hydrogen selectivity and $CH_4$ conversion rate were 56.8%, 38.1% and 92.2% respectively. The energy efficiency and specific energy requirement were 37.0%, 183.6 kJ/mol. In additional, The experiment of $CO_2/CH_4$ ratio proceeded. Also WGS reactor experiment was proceeding on optimum condition of plasma reactor and the exit concentration were $H_2$ 68%, CO 337 ppm, $CO_2$ 24.0%, $CH_4$ 2.2%, $C_2H_4$ 0.4%, $C_2H_6$ 4.1%. At this time, experiment result of PrOx reactor were $H_2$ 51.9%, CO 0%, $CO_2$ 17.3%.

Analysis of basic IAQ management factors in metropolitan subway (수도권 지하철 내부의 IAQ 관리 기초 인자 분석)

  • Cho Young-Min;Park Duckshin;Lee Cheulgyu;Park Byunghyun;Park Eunyoung
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1138-1142
    • /
    • 2005
  • The IAQ management in subway cabin is very important for the enhancement of the amenity and health of passengers because the subway carries many passengers in a relatively short time mostly in urban area. However, since the ventilation of most subway cabins are performed by simple opening of doors at each stations, the IAQ management is not easy. In this study, we measured some IAQ factors (temperature, relative humidity, particulate matters, CO, and $CO_2$ concentration) of subway cabin in Seoul area. The results showed that the IAQ of the cabin was relatively acceptable. However, $CO_2$ concentrations were higher than 1,000 ppm in most cases. $CO_2$ concentration was mostly proportional to the number of passengers in cabin. Therefore, new method to relieve the $CO_2$ concentration is urgently required.

  • PDF

Quantitative Analysis of CO2 Reduction by Door-opening in the Subway Cabin (출입문 개폐에 의한 전동차 객실 CO2 저감효과 분석)

  • Kwon, Soon-Bark;Cho, Young-Min;Park, Duck-Shin;Park, Eun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.153-161
    • /
    • 2008
  • The guidelines for indoor air quality of public transportations such as subway, train and bus was presented by Korean Ministry of Environment last end of year 2006 based on the great consequence of indoor air quality in daily life. Two main parameters, carbon dioxide($CO_2$) and particulate matters smaller than $10\;{\mu}m(PM_{10})$, were selected as index pollutants for the management of indoor air quality. The former pollutant, $CO_2$, is regarded as index of ventilation status and the major source of $CO_2$ in the train or subway is the exhalation of passengers. It is publically perceived that the high $CO_2$ concentration in a crowded subway will be reduced and ventilated with outdoor air by door-opening taken every 2 or 3 minutes when the train stops each station. However, there has not been any scientific proof and quantitative information on the effect of door-opening on the $CO_2$ reduction by ventilation with outdoor air. In this study, $CO_2$ concentration and number of passengers were measured at each station on the 3 lines of Korail metropolitan subway. In order to evaluate the effect of $CO_2$ reduction by door opening, the theoretical approach using the $CO_2$ balance equation was performed. By comparing the predicted data with monitoring one, the optimum $CO_2$ dilution factor was determined. For the first time, it was quantified that about 35% of $CO_2$ concentration in the subway indoor was removed by the door-opening at each station.

An Effects of $CO_2$ Addition on Flame Structure in a Non-premixed Counterflow Flame (비예혼합 대향류 화염에서 $CO_2$ 첨가가 화염 구조에 미치는 영향 연구)

  • Lee, Kee-Man
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.166-173
    • /
    • 2007
  • A numerical study was conducted to have the effect of $CO_2$ addition to fuel on the chemical reaction mechanism with the change of the initial concentration of $CO_2$ and the axial velocity gradient. From this study, it was found that there were two serious effects of $CO_2$ addition on a non-premixed flame ; a diluent effect by the reactive species reduction and chemical effect of the breakdown of $CO_2$ by the third-body collision and thermal dissociation. Especially, the chemical effect was serious at the lower velocity gradient of the axial flow. It was certain that the mole fraction profile of $CO_2$ was deflected and CO was increased with the initial concentration of $CO_2$. It was also ascertained that the breakdown of $CO_2$ would cause the increasing of CO mole fraction at the reaction region. It was also found that the addition of $CO_2$ did not alter the basic skeleton of $H_2-O_2$ reaction mechanism, but contributed to the formation and destruction of hydrocarbon products such as HCO. The conversion of CO was also suppressed and $CO_2$ played a role of a dilution in the reaction zone at the higher axial velocity gradient.

Effects of Co-agent Type and Content on Curing Characteristics and Mechanical Properties of HNBR Composite

  • Lee, Young Seok;Ha, KiRyong
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.95-102
    • /
    • 2020
  • Currently, peroxide cure is a widely used cure system for rubber materials. To improve its effectivity, co-agents are used to enhance the peroxide efficiency and mechanical properties of rubber materials. Co-agents are multifunctional organic compounds that are highly reactive towards free radicals. These co-agents provide higher cross-link densities for a given peroxide concentration and improve the mechanical properties of peroxide-cured rubber composites. In this study, trimethylolpropane trimethacrylate (TMPTMA) and high vinyl 1,2-polybutadiene (HVPBD) were used as co-agents. In order to obtain a concentration that achieves a favorable balance between mechanical properties and co-agent concentration, this research investigated the effects of co-agent content on the curing characteristics, chemical structures, and mechanical properties of HNBR composites. Additionally, the heat aging properties and compression sets of HNBR composites were investigated. Based on the results, we found that the HNBR composites with TMPTMA co-agents exhibited higher Shore A hardness and 10% modulus and better heat aging resistance and compression set than that of the HVPBD co-agent. The heat aging resistance and compression set deteriorated with increasing HVPBD content.

A Study on the Characteristics of $CO_3O_4/{\gamma}-Al_2O_3$ Catalysts for the Emergency Escape Mask Cartridge (화재대피용 방독마스크 정화통 적용을 위한 $CO_3O_4/{\gamma}-Al_2O_3$ 촉매 특성 연구)

  • Kim Deogki;Kim Bokie;Shin Chae-Ho;Shin Changsub
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.74-79
    • /
    • 2004
  • [ $CO_3O_4/{\gamma}-Al_2O_3$ ] catalysts were reported high activity on the low temperature CO oxidation. The effects of the calcination temperature, the loaded amount of cobalt and the oxygen concentration on the characteristics of CO oxidation have been investigated for a emergency escape mask cartridge. $Co(NO_3)_2\cdot6H_2O$ was used as cobalt precursor and the catalysts were prepared by incipient wetness impregnation. TGA shows that enough calcination is accomplished at $450^{\circ}C$ and cobalt phase is $Co_3O_4$ after calcination in the temperature range of $300\ ~500^{\circ}C$. The specific surface area and pore volume of catalysts are decreased with increasing of loaded amount of cobalt. And with the increase of loaded amount of cobalt and the oxygen concentration, the catalytic activity is increased.

Drug Interaction of Metformin and Aspirin in Rabbits (메트포르민과 아스피린의 약물상호작용)

  • Choi, Jun Shik;Choi, In
    • Korean Journal of Clinical Pharmacy
    • /
    • v.13 no.2
    • /
    • pp.67-71
    • /
    • 2003
  • The purpose of this study was to investigate the effect of aspirin (5, 10, 20 mg/kg) on the pharmacokinetics of metformin $(15\;mg/kg)$ in rabbits. The plasma concentration of metformin was decreased significantly (p<0.05) by co-administration of aspirin (10, 20 mg/kg) compared with control. Area under the plasma concentration-time curve (AUC) of metformin was decreased significantly (p<0.05) by co-administration of aspirin (10, 20mg/kg) compared with control. Relative bioavailability $(R.B\%)$ of metformin by co-administration was 79.3 (5 mg/kg), 57.5 (10 mg/kg) and 62.5 (20 mg/kg). Peak plasma concentration of metformin was significantly (p<0.05) decreased by co-administration of aspirin (10, 20 mg/kg) compared with control. The elimination rate constant $(K_{el})$ of metformin was increased by co-administration of aspirin (10, 20 mg/kg) compared with control. The terminal half-lifes $(t_{1/2})$ and mean resident time (MRT) of metformin by co-administration of aspirin (10, 20 mg/kg) were decreased significantly (p<0.05) compared with control. It is considered that the significantly decreased plasma concentration and AUC of metrormin is due to increase of elimination in urine acidified by co-administration of aspirin. The results suggest that the dosage of metformin should be adjusted when metformin is co-administered with aspirin in the clinical situation.

  • PDF

Model for Estimating CO2 Concentration in Package Headspace of Microbiologically Perishable Food

  • Lee, Dong-Sun;Kim, Hwan-Ki;An, Duck-Soon;Yam, Kit L.
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.364-369
    • /
    • 2011
  • Levels of carbon dioxide gas, a metabolite of microbial growth, have been reported to parallel the onset of microbial spoilage and may be used as a convenient index for a packaged food's shelf life. This study aimed to establish a kinetic model of $CO_2$ production from perishable food for the potential use for shelf life control in the food supply chain. Aerobic bacterial count and package $CO_2$ concentration were measured during the storage of seasoned pork meat at four temperatures (0, 5, 10 and $15^{\circ}C$), and their interrelationship was investigated to establish a mathematical model. The microbial growth at constant temperature was described by using model of Baranyi and Roberts. $CO_2$ production from the stored food could be explained by taking care of its yield and maintenance factors linked to the microbial growth. By establishing the temperature dependence of the microbial growth and $CO_2$ yield factor, $CO_2$ partial pressure or concentration in package headspace could be estimated to a limited extent, which is helpful for controlling the shelf life under constant and dynamic temperature conditions. Application and efficacy of the model needs to be improved with further refinement in the model.

An Experimental Study on PAG and POE Oils Return in $CO_2$ Evporator Model ($CO_2$ 냉동시스템 증발기에서 PAG 및 POE 오일 회수에 관한 실험적 연구)

  • Lee, Sung-Kwang;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.646-651
    • /
    • 2007
  • This study has been conducted to select the suitable refrigeration oil for a $CO_2$ refrigeration system. The oil return is one of the most important characteristics for refrigeration oils. PAG and POE oils are considered as a test fluids in this study. An evaporator model is employed to simulate the evaporator of a $CO_2$ refrigeration system. Oil return characteristics has been investigated for $CO_2$/PAG and $CO_2$/POE mixtures in the range of oil concentration 0 to 5 weight-percent and the mixture temperature range of $0^{\circ}C$ to $15^{\circ}C$. The results obtained indicate that oil return is decreased with an increase in the oil concentration and mixture temperature for both POE and PAG oils. It is also found that POE oil is seen to be superior than PAG oil in terms of oil return in an evaporator of a $CO_2$ refrigeration system.

  • PDF