• Title/Summary/Keyword: $CO_2$ Absorbent

Search Result 131, Processing Time 0.028 seconds

Performance improvement of countercurrent-flow membrane gas absorption in a hollow fiber gas-liquid membrane contactor

  • Ho, Chii-Dong;Sung, Yun-Jen;Chen, Wei-Ting;Tsai, Feng-Chi
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.35-50
    • /
    • 2017
  • The theoretical membrane gas absorption module treatments in a hollow fiber gas-liquid membrane contactor using Happel's free surface model were obtained under countercurrent-flow operations. The analytical solutions were obtained using the separated variable method with an orthogonal expansion technique extended in power series. The $CO_2$ concentration in the liquid absorbent, total absorption rate and absorption efficiency were calculated theoretically and experimentally with the liquid absorbent flow rate, gas feed flow rate and initial $CO_2$ concentration in the gas feed as parameters. The improvements in device performance under countercurrent-flow operations to increase the absorption efficiency in a carbon dioxide and nitrogen gas feed mixture using a pure water liquid absorbent were achieved and compared with those in the concurrent-flow operation. Both good qualitative and quantitative agreements were achieved between the experimental results and theoretical predictions for countercurrent flow in a hollow fiber gas-liquid membrane contactor with accuracy of $6.62{\times}10^{-2}{\leq}E{\leq}8.98{\times}10^{-2}$.

Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutions

  • Kim, Young Eun;Lim, Jin Ah;Jeong, Soon Kwan;Yoon, Yeo Il;Bae, Shin Tae;Nam, Sung Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.783-787
    • /
    • 2013
  • The separation and capture process of carbon dioxide from power plants is garnering interest as a method to reduce greenhouse gas emissions. In this study, aqueous alkanolamine solutions were studied as absorbents for $CO_2$ capture. The solubility of $CO_2$ in aqueous alkanolamine solutions was investigated with a continuous stirred reactor at 313, 333 and 353 K. Also, the heat of absorption ($-{\Delta}H_{abs}$) between the absorbent and $CO_2$ molecules was measured with a differential reaction calorimeter (DRC) at 298 K. The solubility and heat of absorption were determined at slightly higher than atmospheric pressure. The enthalpies of $CO_2$ absorption in monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), and 2-amino-2-methyl-1-propanol (AMP) were 88.91, 70.44, 44.72, and 63.95, respectively. This investigation showed that the heat of absorption is directly related to the quantity of heat for absorbent regeneration, and is dependent on amine type and $CO_2$ loading.

Performance Analysis of Upgrading Process with Amine-Based CO2 Capture Pilot Plant

  • Kwak, No-Sang;Lee, Junghyun;Lee, Dong Woog;Lee, Ji Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • This study applied upgrades to the processes of a 10 MW wet amine $CO_2$ capture pilot plant and conducted performance evaluation. The 10 MW $CO_2$ Capture Pilot Plant is a facility that applies 1/50 of the combustion flue gas produced from a 500 MW coal-fired power plant, and is capable of capturing up to 200 tons of $CO_2$. This study aimed to quantitatively measure efficiency improvements of post-combustion $CO_2$ capture facilities resulting from process upgrades to propose reliable data for the first time in Korea. The key components of the process upgrades involve absorber intercooling, lean/rich amine exchanger efficiency improvements, reboiler steam TVR (Thermal Vapor Recompression), and lean amine MVR (Mechanical Vapor Recompression). The components were sequentially applied to test the energy reduction effect of each component. In addition, the performance evaluation was conducted with the absorber $CO_2$ removal efficiency maintained at the performance evaluation standard value proposed by the IEA-GHG ($CO_2$ removal rate: 90%). The absorbent used in the study was the highly efficient KoSol-5 that was developed by KEPCO (Korea Electric Power Corporation). From the performance evaluation results, it was found that the steam consumption (regeneration energy) for the regeneration of the absorbent decreased by $0.38GJ/tonCO_2$ after applying the process upgrades: from $2.93GJ/ton\;CO_2$ to $2.55GJ/tonCO_2$. This study confirmed the excellent performance of the post-combustion wet $CO_2$ capture process developed by KEPCO Research Institute (KEPRI) within KEPCO, and the process upgrades validated in this study are expected to substantially reduce $CO_2$ capture costs when applied in demonstration $CO_2$ capture plants.

Absorption Rate of Carbon Dioxide into Blended Ammonia Solution with Amine Additives in a Stirred Cell Reactor (교반셀에서 측정한 아민첨가 암모니아수 흡수제의 이산화탄소 흡수 반응 속도 측정)

  • Park, HoSeok;You, Jong Kyun;Hong, Won Hi;Kim, Jong Nam
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.185-189
    • /
    • 2009
  • Absorption rate of carbon dioxide into aqueous ammonia absorbent(10 wt%) was measured in the temperature range from 293 K to 337 K using a stirred-cell reactor. The reaction rate constant was correlated with the Arrehnius equation and the activation energy was 50.42 kJ/mol. $CO_2$ absorption rate into modified ammonia absorbent was also investigated. For the modified ammonia absorbent, 1 wt% sterically hindered amines of 2-amino-2-methyl-1-propanol(AMP), 2-amino-2-methyl-1,3-propandiol(AMPD) and 2-amino-2-ethyl-1,3-propandiol(AEPD) were used as additives. The $CO_2$ absorption rate increased by adding 1 wt% of the amine additive, in the case of AMP additive, the absorption rate enhanced by about 53%.

Solubility Measurement of Carbon Dioxide in Alkylcarbonates and Triacetin at High Pressure (고압에서 알킬카보네이트와 트리아세틴의 이산화탄소 용해도 측정)

  • Kim, Ji Won;Hong, Won Hi;Hong, Yeon Ki
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.124-129
    • /
    • 2015
  • The constant-volume method was used to determine the solubility of CO2 in various physical absorbents such as DMPEG (dimethyl ether of polyethylene glycol), DEC (diethyl carbonate), DMC (dimethyl carbonate), and TAT (triacetin) in the total pressure range from 5 to 30 bar. The Peng-Robinson equation of state has been used to describe the equilibrium behavior of these mixtures. It was found that the solubility of absorbents was in the of DMPEG250 > TAT > DEC > DMC at the same temperature. Futhermore, the solubiity of blended absorbent of DMPEG250 and DEC is higher than that of DMPEG 250 alone. Therefore, blended absorbent of DMPEG250 and DEC is expected to be an effective and low cost absorbent for physical absorption in precombustion CO2 capture.

The Effects of Ethylene Absorbent on the Quality of 'Fuyu' Persimmon Fruits in MA Package (MA 포장내 에틸렌 흡착 처리가 단감 '부유'의 선도유지에 미치는 영향)

  • Ahn, Gwang-Hwan;Ha, Yeong-Le;Shon, Gil-Man;Song, Won-Doo;Seo, Kwang-Ki;Choi, Seong-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1278-1284
    • /
    • 2000
  • The study was performed to elucidate the effects of ethylene-absorbent on the quality of 'Fuyu' persimmon fruits in the MA package. Five persimmons were packed in a MA package film (low density polyethylene, 0.055 mm film thickness), and stored at $-0.5^{\circ}C$ for 60 days. Two persimmons were repacked in a MA package with or without ethylene absorbent $(1\;M\;KMnO_4+zeolite)$ and stored at $-0.5^{\circ}C$. Ten days later, these packages was moved to $2^{\circ}C$ or $25^{\circ}C$ storage room to examine the effect of the ethylene-absorbent on the quality of the fruits. Ethylene removal by enclosed ethylene absorbent in MA packaging reduced the rate of fruit respiration at $25^{\circ}C$, so that $O_2$ and $CO_2$ concentration in packing were maintained higher and lower, respectively, compared to control. These effects were not observed, however, in $2^{\circ}C$ post-storage. Fruit firmness and sugar composition were also influenced by ethylene absorbent, showing more delayed flesh softening and higher sucrose concentration in ethylene absorbent treated fruits than control. But ethylene-absorbent treatment lowered glucose and fructose concentration. That shows that ethylene could influence on sugar composition by inhibiting sucrose inversion to glucose and fructose. The production of ethanol and acetaldehyde was reduced by ethylene removal, but the effect was not so high as other quality indices.

  • PDF

Modeling Study on a Circulatory Hollow-Fiber Membrane Absorber for $CO_{2}$ Separation (이산화탄소 분리를 위한 순환식 중공사 막흡수기에 관한 모델링 연구)

  • Chun, Myung-Suk;Lee, Kew-Ho
    • Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.35-43
    • /
    • 1995
  • For several years lots of attempts have been made to establish the liquid membrane-based techniques for separations of gas mixtures especially containing carbon dioxide. A more effective system to separate $CO_{2}$ from flue gases, a circulatory hollow-fiber membrane absorber(HFMA) consisting of absorption and desorption modules with vacuum mode, has been considered in this study. Gas-liquid mass transfer has been modeled on a membrane module with non-wetted hollow-fibers in the laminar flow regime. The influence of an absorbent flow rate on the separation performance of the circulatory HFMA can be predicted quantitatively by obtaining the $CO_{2}$ concentration profile in a tube side. The system of $CO_{2}/N_{2}$ binary gas mixture has been studied using pure water as an(inert) absorbent. As the absorbent flow rate is increased, the permeation flux(i.e., defined as permeation rate/membrane contact area) also increases. The enhanced selectivity compared to the previous results, on the other hand, shows the decreasing behavior. It has been found obviously that the permeation flux depends on the variations of pressure in gas phase of desorption module. From an accurate comparison with the results of conventional flat sheet membrane module, the advantageous permeability of this circulatory HFMA can be clearly ascertained as expected. Our efforts to the theoretical model will provide the basic analysis on the circulatory HFMA technique for a better design and process.

  • PDF

Thermal Degradation of Aqueous MEA Solution for CO2 Absorption by Nuclear Magnetics Resonance (핵자기공명분석법을 이용한 수용성 아민 CO2 흡수제인 MEA의 열적변성 분석)

  • CHOI, JEONGHO;YOON, YEOIL;PARK, SUNGYOUL;BAEK, ILHYUN;KIM, YOUNGEUN;NAM, SUNGCHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.562-570
    • /
    • 2016
  • At the carbon dioxide capture process using the aqueous amine solution, degradation of absorbents is main factor to reducing the process performance. Also, degradation mechanism of absorbent is important for understanding the environmental risk, route of degradation products, health risk etc. In this study, the degradation products of MEA were studied to clarify mechanism in thermal degradation process. The degradation products were analyzed using a $^1H$ NMR (nuclear magnetic resonance) and $^{13}C$ NMR. The analysis methods used in this study provide guidelines that could be used to develop a degradation inhibitor of absorbent and a corrosion inhibitor.

The feature of Microcapsule Involving Ultraviolet Rays Absorbent

  • Ueda, Yuka;Segawa, Akihiro;Murakoshi, Noriyuki;Hayashi, Natsuko;Yoshioka, Masato
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.417-430
    • /
    • 2003
  • A new method was developed to prepare microcapsules involving hydrophobic components. A totally new "silicone-resin-polypeptide" was used as the wall materials. The polypeptide was made by hydrolysis of collagen and silk protein and so on, and that was combined with silicone. This microcapsule was easily prepared from silicone-resin-polypeptide in water solution. The ratio of encapsulation in the microcapsule was not only high level as 90%, which had never been reached, but also the particle size could be controlled to obtain very small size (average particle size: 2${\mu}{\textrm}{m}$). Moreover, these microcapsules were resistant to high shearing forces and were stable over a long time period. This stable microcapsule was not crushed in pressure with finger spreading, so the core materials hardly touch the skin directly. Application in cosmetics by using microcapsule involving UV absorbents (2-ethylhexy1-4-methoxycinnamate (OMC) and 4-tert-butyl-4' -methoxydibenzoyl-methane (BMDBM)) was examined. It was possible to apply organic UV absorbents in water-rich formulations without any surfactant by using this microcapsule. This formulation demonstrated a good moisturizing and soft skin feel. Therefore, the microcapsule was applied to hair care products. As a result, the sunscreen hair lotion with microcapsule was able to prevent from damaging and decoloring of hair color by UV rays. As just, it was suggested that this microcapsules were be widely applied in cosmetics.cosmetics.

  • PDF

Absorption and Regeneration of Carbon Dioxide in Aqueous AMP + AEPD and AMP + TIPA Solutions (AMP + AEPD와 AMP + TIPA 수용액을 이용한 이산화탄소의 흡수 및 재생)

  • Kim, Mi-Sook;Choi, Won-Joon;Seo, Jong-Beom;Cho, Ki-Chul;Kim, Soo-Gon;Oh, Kwang-Joong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.539-546
    • /
    • 2007
  • Increasing emission of $CO_2$ significantly effects the global warming. Chemical absorption is one of separation methods of $CO_2$ from the industrial flue gases. In this study, the $CO_2$ removal efficiency as well as the $CO_2$ absorption amount of aqueous AMP (2-amino-2-methyl-1-propanol) solutions were measured using the continuous absorption and regeneration apparatus. We investigated the effect of aqueous AMP+AEPD(2-amino-2-ethyl-1, 3-propanediol) and AMP+TIPA (triisopropanolamine) solutions to enhance absorption characteristics of AMP. As a result of this study, the absorption amount and $CO_2$ removal efficiency were increased with adding TIPA into 30 wt.% AMP. The absorption amount and $CO_2$ removal efficiency of aqueous 30 wt.% AMP+5 wt.% TIPA solution were $1.70\;kg-CO_2/kg-absorbent$ and 91.1%, while those of aqueous 30 wt.% AMP solution were $1.58\;kg-CO_2/kg-absorbent$ and 89.3%. In addition, aqueous 30 wt.% AMP+5 wt.% TIPA solution used in the study revealed the high stripping efficiency, which was almost 98%, at the temperature of $110^{\circ}C$. Thus, the temperature of regenerator should be operated at $110^{\circ}C$.