• Title/Summary/Keyword: $COD_cr$

Search Result 332, Processing Time 0.028 seconds

Optimal Condition of Operation Parameter for Livestock Carcass Leachate using Fenton Oxidation Process (가축 사체 매몰지 침출수 처리를 위한 Fenton 산화공정의 최적조건)

  • An, Sang-Woo;Jeong, Young-Cheol;Yoo, Ji-Young;Min, Jee-Eun;Lee, Si-Jin;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.26-35
    • /
    • 2013
  • Outbreak of animal infectious diseases such as foot-and-mouth disease, avian influenza are becoming prevalent worldwide. For prevent the further infection, tremendous numbers of the infected or culled stocks are buried around farm. This burial method can generate a wide range of detrimental components such as leachate, nutrient, salt, and pathogenic bacteria, consequently. In this study, for the stabilization of livestock carcasses leachate, advanced oxidation processes utilizing the Fenton reaction was investigated in lab-scale experiments for the treatment for $COD_{Cr}$ of livestock carcass leachate. $COD_{Cr}$ reduction by the Fenton oxidation was investigated response surface methodology using the Box-Begnken methods were applied to the experimental results. A central composite design was used to investigate the effects of the independent variables of pH ($x_1$), dosage of $FeCl_2{\cdot}4H_2O$ ($x_2$) and dosage of $H_2O_2$ ($x_3$) on the dependent variables $COD_{Cr}$ concentration ($y_1$). A 1 M NaOH and $H_2SO_4$ was using for pH control, $FeCl_2{\cdot}4H_2O$ was used as iron catalyst and NaOH was used for Fenton reaction. The optimal conditions for Fenton oxidation process were determined: pH, dosage of $FeCl_2{\cdot}4H_2O$ and dosage of $H_2O_2$ were 3, 0.6 g (0.0151 M) and 7 mL(0.259 M), respectively. Statistical results showed the order of significance of the independent variables to be pH > initial concentration of ferrous ion > initial concentration of hydrogen peroxide.

Variation of Water Chemical Components and Estimation of Suitability as the Source for Irrigation Water at Seo-Lake in Suwon (수원 서호의 수질화학성분변화와 농업용수원으로의 적합성 평가)

  • Kim, Jin-Ho;Lee, Jong-Sik;Ryu, Jong-Su;Ahn, Eui-Young;Ahn, Seung-Gu
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.242-246
    • /
    • 2000
  • This study was carried out to show the chemical variations of monthly water quality and to estimate the quality as irrigation water at Seo-Lake. The water quality was surveyed at 6 sites for 7 months from May to November in 1999. The average concentration of $COD_{Cr}$ at Seo-Lake was 47.8mg/L. This value meant that the organic matters at the lake would exceed to the crop damage level (50mg/L). Especially, the values in May and in July were 83.07mg/L, 80.64mg/L, respectively. The average concentration of $NH_3-N$ was appeared to 2.84mg/L. But it was shown 5.72mg/L in May. That could put a restraint on the productive power of the crops. It was supposed that happened by eutrophication. And the water pollutant levels were high at stagnation part of the lake. But average water quality of the lake could be used for irrigation. The result showed that the research and the management of water quality were needed to make the lake water more suitable as the source for irrigation.

  • PDF

ISOLATION, IDENTIFICATION AND CHARACTERIZATION OF AN IMMOBILIZED BACTERIUM PRODUCING N2 FROM NH4+ UNDER AN AEROBIC CONDITION

  • Park, Kyoung-Joo;Cho, Kyoung-Sook;Kim, Jeong-Bo;Lee, Min-Gyu;Lee, Byung-Hun;Hong, Young-Ki;Kim, Joong-Kyun
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.213-226
    • /
    • 2005
  • To treat wastewater efficiently by a one-step process of nitrogen removal, a new bacterial strain producing $N_2$ gas from ${NH_4}^+$ under an aerobic condition was isolated and identified. The cell was motile and a Gram-negative rod, and usually occurred in pairs. By 16S-rDNA analysis, the isolated strain was identified as Enterobacter asburiae with 96% similarity. The isolate showed that the capacity of $N_2$ production under an oxic condition was approximately three times higher than that under an anoxic condition. Thus, the consumption of ${NH_4}^+$ by the isolate was significantly different in the metabolism of $N_2$ production under the two different environmental conditions. The optimal conditions of the immobilized isolate for $N_2$ production were found to be pH 7.0, $30^{\circ}C$ and C/N ratio 5, respectively. Under all the optimum reaction conditions, $N_2$ production by the immobilized isolate resulted in reduction of ORP with both the consumption of DO and the drop of pH. The removal efficiencies of $COD_{Cr}$, and TN were 56.1 and 60.9%, respectively. The removal rates of $COD_{Cr}$, and TN were the highest for the first 2.5 hrs with the removal $COD_{Cr}/TN$ ratios of 32.1, and afterwards the rates decreased as reaction proceeded. For application of the immobilized isolate to a practical process of ammonium removal, a continuous operation was executed with a synthetic medium of a low C/N ratio. The continuous bioreactor system exhibited a satisfactory performance at 12.1 hrs of HRT, in which the effluent concentrations of ${NH_4}^+$-N was measured to be 15.4 mg/L with its removal efficiency of 56.0%. The maximum removal rate of ${NH_4}^+$-N reached 1.6 mg ${NH_4}^+$-N/L/hr at 12.1 hrs of HRT(with N loading rate of $0.08\;Kg-N/m^3$-carrier/d). As a result, the application of the immobilized isolate appears a viable alternative to the nitrification-denitrification processes.

Compazrison of Water Qualities and Biotic Effects of Three River Waters in Taegu Area (대구지방 하천의 수질특성과 수생물에 미치는 영향 비교)

  • Lyu, Seung-Won;Seung-Dal Song
    • Journal of environmental and Sanitary engineering
    • /
    • v.5 no.1
    • /
    • pp.7-13
    • /
    • 1990
  • The water environmental characters of the Nakdong River, Geumho River and Sin Stream, both before-flood (Aug. 24) and after-flood (Sept. 8), have been compared, and their effects on the growth of Spirodela polyrhiza Shleiden have been examined. Before the flood, the concentrations of most of the chemical components of the Geumho River were similar to those of the Sin Stream; (COD, 19.6~21.4; alkalinity, 177~183; $NH_4\;^+$, 20.7~24.4; $NO_3\;^-$, 3.9~4.3; $PO_\;4^{3-}$, 3.4~3.7; $Mg^{2+}$, 42; $Ca^{2+}$, 68.5~69.7; $Cl^-$, 90~92; $SiO_2$, 10.4~11.2; , 11~32; LAS, 3.0~3.8; , 0.007~0.010ppm) but much higher than those of the Nakdong River (30~40 fold for $NH_4\;^+$, , $PO_\;4^{3-}$ and LAS, and 2~5 fold for COD, alkalinity, $NO_3\;^-$, $Mg^{2+}$, Cl- and ). Especially in the Geumho River, Secchi disk transparency was very low (17cm) and DO was not detected. The flood caused significant increases in some chemical components: $NH_4\;^+$, 1.0;$NO_3\;^-$, 9.6; , 12.8 and , 5.4 ppm in the Nakdong River; DO, 1.0; $NO_2\;^-$, 0.92; $NO_3\;^-$, 22.2 and $SiO_2$, 17.6ppm in the Geumho River; DO, 3.0; $NO_2\;^-$, 1.4; $NO_3\;^-$, 22.2; SiO2$SiO_2$, 19.2 and , 25.0ppm in the Sin Stream. General species diversity index (H) of phytoplankton community in the Nakdong River, Geumho River and Sin Stream before flood was 3.1, 2.7 and 1.6, respectively. After the flood, the phytoplankton growth was highly sparse in each river water, hence indices have no significance. The growth of S. polyrhiza was enhanced in Geumho River water (max. RGR=26%/day), while it ceased within 7days in Nakdong River water.

  • PDF

A Study on the Removal of Organics and Nutrients in the Process Using Attached Biomass and Aquatic Floating Plants (부착미생물과 부유수생식물을 이용한 공정에서 유기물 및 영양염류 제거에 관한 연구)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.323-328
    • /
    • 2008
  • This study was accomplished using Anaerobic/Anoxic/Oxic biofilm reactors with fixed media and post-treatment reactor for natural purification with aquatic floating plants. The objectives of this study was to investigate the characteristics of organics, nitrogen and phosphorus removal from sewage with the HRT. The average removal efficiency of SS and $COD_{Cr}$ increases as increasing the hydraulic retention time (HRT) until 12 hr of the HRT, and it was constant over 12 hr of the HRT. The removal efficiency of them was about 93% and 89% respectively over the 12 hr of HRT. The average $BOD_5$ and $COD_{Mn}$ increases as increasing the HRT and the removal efficiency of them was 84.91 % and 76.03% respectively at the 26 hr of HRT. The removal efficiency of T-N and T-P increases as increasing the HRT until 61 hr of the HRT, and it was constant over 61 hr of the HRT. At the HRT of 61 hr, it was 70.20%, 77.86% respectively. It was found that the optimum HRT was 61 hr in case of the nutrients. Before and after experiment, the nitrogen content was similar in leaves of the water hyacinths but the nitrogen content in roots after experiment was 5.5% more than its content before experiment. It was known that the nitrogen was absorbed by the water hyacinths.

Biosorption Characteristics of Organic Matter in a Sequencing Batch Reactor : Effect of Sludge Retention Time (연속 회분식 반응기내 유기물 생물흡착특성: SRT 영향)

  • Kim, Keum-Yong;Kim, Jin-Hyung;Kim, Dae-Keun;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.175-180
    • /
    • 2008
  • The objective of this study was to investigate biosorption of organic matter on EPS(Extracellular Polymeric Substances) at different SRT(Sludge Retention Time) in a SBR(Sequencing Batch Reactor) process, which was operated with the following operation steps : Fill-React-Settle-Decant-Idle. The hydraulic retention time was set to be 24 hours. The results obtained from this study showed that the organic removal efficiency per unit microbial biomass decreased with increasing SRT, and the corresponding EPS amount also did. The percent removal of organic by biosorption increased with SRT, and it reached to 53.2% at SRT of 30 days. However, the highest biosorption per microbial biomass(48.6 mgCOD/gVSS) was found at SRT of 2 days. The EPS analysis was performed by measuring TSS, TCOD$_{Cr}$, and TKN. The EPS production per unit microbial biomass was observed to be high at a low SRT. Due to the above result, the floc formation was hindered and therefore poor settlement of sludge resulted in decreasing the COD removal efficiency. It was therefore concluded that the consideration of the system design should include the characteristic of EPS as well as other factors such as SRT, MLSS, and organic loading.

Removal Characteristics of Nitrogen and Phosphorus in swine wastewater by Using Acetic acid on the SBR Process (SBR에서 아세트산을 이용한 양돈폐수의 질소·인 제거 특성)

  • Huh, Mock;Kang, Jin-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.84-93
    • /
    • 2004
  • This study was performed : 1) to find the suitable HRT(hydralic retention time), 2) to evaluate the effects of the ratio of mixing/aeration time and injection time of external carbon source, for the removal of organics, nitrogen and phosphorus in swine wastewater by SBR(sequencing batch reactor process), which is one of the biological treatment process. The result of this study were summarized as follows : (1) As the ratio of mixing/aeration time was higher, $NH_4{^+}-N$ removal efficiency was increased and it was increased with increasing injection time of external carbon source because nitrification was affected by denitrification microbes propagation when injection time of external carbon soruce was shorted. T-N removal efficiency was increased with increasing the ratio of mixing/aeration time and injection time of external carbon source. (2) The T-P removal efficiency showed a great difference in each operating condition, and it was increased with increasing the ratio of mixing/aeration time increased and when the injection time of external carbon source was shorted because denitrification was done with effect by denitrification microbes propagation. (3) The highest removal efficiency of organic and nitrogen were obtained by the operating condition of Run 4-1(the ratio of mixing/aeration time : 16.5/5.5, injection time of external carbon source : 15hours) and T-P were obtained by the operation condition of Run 4-2(the ratio of mixing/aeration time : 16.5/5.5, injection time of external carbon source : 3hours), and efficiency(effluent concentration)of $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, T-N and T-P in the treated water was 96.1%, 87.7%, 90.6%, 86.6% and 84.5%, respectively.

  • PDF

Catalytic Ozonation of Phenol (페놀의 촉매오존산화 반응에 관한 연구)

  • Lee, Cheal-Gyu;Woo, Jeong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.731-738
    • /
    • 2011
  • In this study AOPs of $O_3/UV$ radiation, $O_3/Mg(OH)_2/UV$ radiation and $O_3/MgO/UV$ radiation system for phenol treatment in aqueous solution was performed in a laboratory scale circulating batch reacter. Flow rate of ozone 1.0 L/min, ozone concentrations $150{\pm}10mg/L$ was maintained constantly at the above-mentioned oxidation processes. During the oxidation processes the $COD_{Cr}$ and TOC was measured in the composition. The pseudo first-order rate constants of the processes was $5.12{\times}10^{-5}$, $1.19{\times}10^{-4}$ and $1.79{\times}10^{-4}sec^{-1}$, and the activation energy was 3.03, 1.79 and $2.32kcal{\cdot}mol^{-1}$ at $20^{\circ}C$, respectively. It was found that both $Mg(OH)_2$ and MgO had remarkable accelerations on degradation of phenol and removal of COD in water. On this basis, $O_3/MgO/UV$ system is an effective and feasible routes for catalytic ozonation of phenol in water.

Physicochemical Characteristics and Analysis of Pollution Potential in the Sediments of the Rivers Flowing into the Saemangeum Reservoir (새만금호 유입 하천 하상 퇴적물의 물리화학적 특성과 오염도 분석)

  • Oh, Kyoung-Hee;Yu, Mi-Na;Cho, Young-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.861-867
    • /
    • 2011
  • In order to understand the extent of contamination of the sediments on the Mankyoung and Dongjin Rivers flowing into the Saemangeum Reservoir, the concentrations of ignition loss (IL), COD, total nitrogen (T-N), total phosphorus (T-P), and heavy metals (As, Cd, Cr, Pb, Zn) were measured. The average concentrations of IL, COD, and T-P were 2.40 (${\pm}2.18$)%, 2.97 (${\pm}3.06$) mg/g sediment, 0.370 (${\pm}0.351$) mg/g sediment, respectively, showing the extent of contamination is not serious. However, the concentrations of these parameters in the samples taken in year 2009 were higher than those in year 2008, indicating the contamination of sediments goes on gradually. The concentrations of T-N were in the range of 0.59~13.11 mg/g sediment with variation of locations and seasons. It was determined that the T-N contamination is serious when the concentrations were compared with the dredging guidelines of sediments in the Korean freshwaters, indicating the countermeasures are required to maintain the water quality of the Saemangeum Reservoir. The concentrations of heavy metals except chromium did not exceed the worrisome level of soil contamination stipulated by the Soil Environment Conservation Act of Korea. The high concentration of chromium to be concerned in some samples from the upstream of Mankyoung River requires source analysis and countermeasure to control the contamination.

Electrochemical Oxidation of Pigment Wastewater Using the Tube Type Electrolysis Module System with Recirculation (재순환방식 튜브형 전해모듈시스템을 이용한 안료폐수의 전기화학적 산화)

  • Jeong, Jong Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.411-419
    • /
    • 2016
  • The objective of this study was to evaluate the application possibility of tube type electrolysis module system using recirculation process through removal organic matters and nitrogen in the pigment wastewater. The tube type electrolysis module consisted of a inner rod anode and an outer tube cathode. Material used for anode was titanium electroplated with $RuO_2$. Stainless steel was used for cathode. It was observed that the pollutant removal efficiency was increased according to the decrease of flowrate and increase of current density. When the retention time in tube type electrolysis module system was 180 min, chlorate concentration was 382.4~519.6 mg/L. The chlorate production was one of the major factors in electrochemical oxidation of tube type electrolysis module system using recirculation process used in this research. The pollutant removal efficiencies from the bench scale tube type electrolysis module system using recirculation operated under the electric charge of $4,500C/dm^2$ showed the $COD_{Mn}$ 89.6%, $COD_{Cr}$ 67.8%, T-N 96.8%, and Color 74.2%, respectively and energy consumption was $5.18kWh/m^3$.