• Title/Summary/Keyword: $COD_{cr}/T-N$ ratio

Search Result 19, Processing Time 0.028 seconds

Nitrogen and Phosphorus Removal in Domestic Wastewater using SBR Process with Flow Changing Continuous Feed and Cyclic Draw (교대연속유입식 SBR 공정을 이용한 하수중의 질소 및 인 제거)

  • Seo, In-seok;Kim, Hong-suck;Kim, Youn-kwon;Kim, Ji-yeon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.203-208
    • /
    • 2006
  • A continuous feed and cyclic draw SBR process was developed to overcome flow rate fluctuation and to maximize organic matters utilization efficiency for nitrogen and phosphorus removal. The developed SBR process was operated with two parallel reactors. Influent was supplied to one reactor which was not obligately aerated. At the same time, the other reactor was just aerated without supplying influent. In addition this mode was changed periodically. Cycle time was 6hr and aeration time ratio($t_{aer}/t_{total}$) was 0.33, respectively. $COD_{cr}$ and SS removal efficiencies of 95% or higher were achieved. Nitrogen removal was so greatly influenced by influent $COD_{cr}/T-N$ ratio. At influent $COD_{cr}/T-N$ ratio of 5.7, removal efficiencies of ammonia-N, T-N and T-P were 96%, 78% and 55%, respectively. Influent $COD_{cr}/T-N$ of 4 or higher ratio was necessary to achieve 60% or higher nitrogen removal. Organic matters of influent was efficiently utilized in denitrification reaction and consumed COD has a good correlation with removed T-N(about 6.5 mgCOD/mgTN). Continuous feed and cyclic draw SBR process could be one of alternative processes for the removal of nutrients in rural area where $COD_{cr}/T-N$ ratio was low and fluctuation of flow rate was severe.

Evaluation of biological treatment of cutting-oil wastes using sequencing batch reactor (SBR) process (연속 회분식 반응조 (SBR) 공정을 이용한 폐절삭유의 생물학적 처리능 평가)

  • Baek, Byung-Do;Kim, Chang-Seop;Kim, Jun-Young;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1654-1660
    • /
    • 2009
  • Two different cutting-oils from H and B companies which are sold as an eco-friendly cutting-oils were selected and the biodegradability of these commercially available cutting-oils was evaluated by the sequencing batch reactor (SBR) processes. The cutting-oil wastes ($H_1$) pre-treated by coagulation/flocculation was used as an influent to SBR. When the F/M ratio was operated 0.04 to 0.08kgCOD/kgMLSS d, removals of $BOD_5$and $COD_{Cr}$were above 97% and 91%, respectively. T-N and T-P removals were above 76% and 81%, respectively. If the diluted cutting-oil wastes ($B_1$) was used as an influent of the SBR, $COD_{Cr}$removals were above 77% at the F/M ratio of 0.01-0.02kgCOD/kgMLSS d. After the cutting-oil wastes was treated by coagulation/ flocculation ($B_2$), $COD_{Cr}$removals was above 85%. If the pre-treated cutting-oil wastes were mixed with a synthetic wastewater ($B_3$) and fed into the SBR in order to mimic the real wastewater treatment plant situation, $BOD_5$and $COD_{Cr}$removals were above 97%, 91%, respectively. T-N and T-P removals were above 79% and 76%. The ratio between $BOD_5$and $COD_{Cr}$, ($COD_{Cr}$-$BOD_5$)/$COD_{Cr}$, indicating the biodegradability of effluent of the SBR, was calculated to 85% and 61%. This means that significant amounts of non-readily-biodegradable organic compounds in the effluent of $H_1$, $B_3$are still present.

Nitrogen Removal from Wastewater by a Multi-stage Bio-reactor (다단 생물반응기에 의한 질소제거)

  • 최규철;정일현
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.91-103
    • /
    • 1998
  • Design data for COD and nitrogen removal from wastewater were collected from Pilot's Multi-stage Bio-reactor. Hyraulic conditions and pollutant loadings were varied in order to optimize the biological and operational parameters. Pilot's experimental results summarize as followings. 1. T-N removal efficiency in the organic volumetric loading 0.2 kgCOD/m$^{3}$·d was obtained as maxium of 85% at internal recycle ratio 2.5 and in more ratio than this it was decreased. Organic removal efficiency was about 91% under the overall experimental conditions and not influenced by recycle ratio.. 2. Nitrification reaction was shown as maxium in the SCOD$_{cr}$/NH$^{+}$-N ratio of 6.5 and in more ratio than this it was decreased. Denitrification rate was the maxium as 85% in more than 7.5 of SCOD$_{cr}$/NO$_{x}$-N ratio and in the ratio over this ratio it becomes constant. 3. By utilizing an applied new model of Stover-Kincannon from Monod's kinetic model, concentration of T-N in the effluent according to flow quanity in the influent was estimated as 8.74 and -67.5 respectively. The formula for estimating T-N concentration of effluent was obtained like this: N$_e$=N$_0$(1- $\frac{8.74}{(QN$_0$/A)-67.05}$)

  • PDF

Solid Separation and Flotation Characteristics of Livestock Wastewater Using DAF Process (DAF 공정을 이용한 축산폐수의 고형물 분리와 부상특성)

  • Kang, Byong-Jun;Yoo, Seung-Joon;Lee, Se-il;Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.359-366
    • /
    • 2008
  • The series of experiments under the various conditions were carried out to evaluate the feasibility of dissolved air flotation (DAF) as an alternative of conventional gravity sedimentation (CGS) and to investigate the decrease of the loadings following to biological wastewater treatment processes in livestock wastewater system. On the basis of the experiment result between CGS and DAF processes, for the other water quality criteria as well as suspended solid the removal efficiency of DAF process was about 20~25 % better than CGS process on average. In addition, the particle removal efficiency of DAF process became higher in proportion as the increase of air to solid (A/S) ratio and the general wastewater treatment efficiency of DAF process was enough to meet the requirement of loading decrease to following biological process even at low A/S ratio range. Though DAF process is widely known as an solid separation unit, there was not the notable relationship between particle separation efficiency and several pollutant removal efficiencies like $COD_{Cr}$ and nutrients (T-N, T-P). Assume that the $COD_{Cr}$ was removed as the fraction of particle separation in this experiment, the removal efficiency of T-N and T-P were sensitive to removal efficiency of $COD_{Cr}$, especially.

Removal Characteristics of Nitrogen and Phosphorus in swine wastewater by Using Acetic acid on the SBR Process (SBR에서 아세트산을 이용한 양돈폐수의 질소·인 제거 특성)

  • Huh, Mock;Kang, Jin-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.84-93
    • /
    • 2004
  • This study was performed : 1) to find the suitable HRT(hydralic retention time), 2) to evaluate the effects of the ratio of mixing/aeration time and injection time of external carbon source, for the removal of organics, nitrogen and phosphorus in swine wastewater by SBR(sequencing batch reactor process), which is one of the biological treatment process. The result of this study were summarized as follows : (1) As the ratio of mixing/aeration time was higher, $NH_4{^+}-N$ removal efficiency was increased and it was increased with increasing injection time of external carbon source because nitrification was affected by denitrification microbes propagation when injection time of external carbon soruce was shorted. T-N removal efficiency was increased with increasing the ratio of mixing/aeration time and injection time of external carbon source. (2) The T-P removal efficiency showed a great difference in each operating condition, and it was increased with increasing the ratio of mixing/aeration time increased and when the injection time of external carbon source was shorted because denitrification was done with effect by denitrification microbes propagation. (3) The highest removal efficiency of organic and nitrogen were obtained by the operating condition of Run 4-1(the ratio of mixing/aeration time : 16.5/5.5, injection time of external carbon source : 15hours) and T-P were obtained by the operation condition of Run 4-2(the ratio of mixing/aeration time : 16.5/5.5, injection time of external carbon source : 3hours), and efficiency(effluent concentration)of $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, T-N and T-P in the treated water was 96.1%, 87.7%, 90.6%, 86.6% and 84.5%, respectively.

  • PDF

A study on the estimation of unit load generation and discharge from livestock resources of piggery (돼지 축분자원화물의 발생 및 배출부하 원단위 산정에 관한 연구)

  • Han, Gee-Bong;Kang, Young-Hee;Yoon, Ji-Hyun;Rim, Jay-Myoung;Won, Chul-Hee;Choi, Seung-Chul
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.91-100
    • /
    • 2006
  • In this study, the characterization of unit load generation and discharge from various type stall of piggery was conducted by investigation and analysis of contaminants loading from piggery urine, manure and wastewater. The results are summarized as follows: The unit load generation of filth increases as piggery grow older, but there was not large enough difference among those values of unit load evaluated for various stall types if mean values of each type of stall are considered. The generation amounts of manure and urine were total 4.57kg/head/d of 1.49kg manure/head/d and 3.08kg urine/head/d with consideration of 3 seasons and live weight. The finalized mean unit load generation of filth were estimated at BOD 199.5g/head/d, $COD_{cr}\;413.5g/head/d$, T-N 27.8g/head/d, T-P 5.3g/head/d with consideration of seasons and the type of stalls. The wastewater unit loads discharged from cement type stall were estimated at BOD 31.3g/head/d, $COD_{cr}\;95.6g/head/d$, T-N 8.9g/head/d, T-P가 3.1g/head/d. The sum of manure unit load generation considered with manure collection ratio(80%, 90%) and wastewater unit load was almost similar when compared to the unit load discharged from slurry type stall even though more or less difference were appeared according to each contaminants and parameters.

  • PDF

Characteristics of sewage Treatment by using Indirectly Aerated Submerged Biofilter(INSUB) (간접폭기형 침적생물여과장치(INSUB)를 이용한 오수처리 특성)

  • Huh, Mock;Kang, Jin-Yuong;Kim, Gwang-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.2
    • /
    • pp.125-131
    • /
    • 2003
  • This study was carried out to develop INSUB(Indirected Aerated Submerged Biofilter) which can remove organics, nitrogen and phosphorus with an advanced treatment system. The results were as followed in laboratory model experiment. As for treatment of sewage, when economical efficiency was considered in practice, the highest removal efficiency was at 18hr of HRT, 1.017m/hr of superficial velocity and 40% of media packing ratio. Each removal efficiency for $COD_{cr}$, $COD_{Mn}$, $BOD_5$, T-N, and T-P was 90.6, 85.3, 95.0, 52.3 and 56.8%. To remove the nitrogen and phosphorus With high efficiency, first of all, denitrification have to be completed, then uptake of phosphorus have to completed. Therefor, mixture of anoxic and aerobic reactor was necessary for the high removal efficiency of nitrogen and phosphorus in INSUB.

  • PDF

Assessment of Characteristics and Field Applicability with TPA By-Product as Alternative External Carbon Source (대체 외부탄소원으로서의 TPA 생산부산물 특성 및 현장적용성 평가)

  • Jung, In-Chul;Jun, Sung-Gyu;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.480-486
    • /
    • 2006
  • On account of exchanging main process from chemical precipitation for MLE(Modified Ludzark-Ettinger), an external carbon source was required for supplementation of carbon source shortage that was needed biological denitrification in the S sewage treatment plant(S-STP). In this study, NUR(nitrate uptake rate), OUR(oxygen uptake rate) test and a field application test was conducted for the applicability assessment of Terephtalic acid(TPA) by-product contained about 4.7% acetate as alternative external carbon source. As the results, TPA by-product shows more rapid acclimation than methanol, 8.24 mg ${NO_3}^--N/g$ VSS/hr specific denitrification rate, 3.70 g $COD_{Cr}/g\;NO_3$ C/N ratio and 99.4% readily biodegradable COD contents. In the results of field application, the nutrient removal efficiency was high and effluent T-N concentration is 8.2 mg/L. It is concluded that TPA by-product is the proper alternative external carbon source.

Removal Character of Nitrogen and Phosphorus in Swine Wastewater with Injection Time of Acetic Acid on SBR (SBR에서 아세트산 주입시간변화에 따른 양돈폐수의 질소, 인 제거특성)

  • Huh, Mock;Lee, Yong-Doo;Kang, Jin-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.1
    • /
    • pp.132-137
    • /
    • 2003
  • This study was carried out to investigate removal character of nitrogen and phosphorus with injection time of acetic acid on SBR, which is one of the biological treatment process. Wastewater used in experiment period was swine wastewater with character, relatively lower organic material concentration than nitrogen concentration. In the experiment with injection time of acetic acid, run 1 wasn't injected acetic acid during the anoxic period, and run 2 was injected intermittently acetic acid during the anoxic period of 15 hours. And run 3 was injected intermittently during the anoxic period of 3hours from end of wastewater filling. And filing time of the wastewater was 20hour from run 1 to run 3. In the study, the highest removal efficiency of organic and nitrogen were obtained by the operating condition of Run 2(the ratio of mixing/aeration time : 16.5/5.5, injection time of acetic acid : 15hours) and T-P was obtained by the operation condition of Run 3(the ratio of mixing/aeration time : 16.5/5.5, injection time of acetic acid : 3hours),and removal efficiency of $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, T-N and T-P in the treated water was 96.1%, 87.7%, 90.6%, 86.6% and 84.5%, respectively.

  • PDF

외부 반송이 있는 생물활성탄담체(BACC) 공정에 의한 오수 중 질소${\cdot}$인의 동시 제거

  • Lee, Ho-Gyeong;Gwon, Sin;Jo, Mu-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.414-417
    • /
    • 2000
  • BACC(Biological Activated Carbon Cartridge)process is a newly developed biological process to remove organic compounds, nitrogen, and phosphorus with activated carbon granules in iron fixed-frame cartridge type. The largest defect of previous BACC process was denitrification inefficiency. The removal efficiencies of nitrogen and phosphorous with external recycle ratios $100{\sim}200%$ for synthetic wastewater were $69.8{\sim}90.1%$ and $62.18{\sim}91%$, respectively, since the modified BACC process with external recycle overcame the defect of BACC process. When external recycle ratio was increased more than 300%, T-N removal efficiencies were decreased. In the treatment of a real sewage using modified BACC process, $COD_{Cr}$, removal efficiencies were $96.3{\sim}97.5%$ which was similar to those of the previous BACC process. while T-N removal efficiencies was $88.3{\sim}95.7%$ which were superior to those of the previous BACC process.

  • PDF