• 제목/요약/키워드: $CO-2$

검색결과 39,780건 처리시간 0.06초

Stereoselective Electron Transfer Reactions between Optically Active${\Delta}-cis-[Co(en)_2(NO_2)_2]^+$and rac-$[CO(Y)^{2-}$(Y=EDTA. PDTA, CyDTA) (광학활성인${\Delta}-cis-[Co(en)_2(NO_2)_2]^+$과 라세미-$[CO(Y)^{2-}$(Y=EDTA. PDTA, CyDTA)간의 입체선택적 전자전달반응)

  • Lee, Bae Wook;Kim, Dong Yeub;Lee, Dong Jin;Oh, Chang Eun;Doh, Myung Ki
    • Journal of the Korean Chemical Society
    • /
    • 제39권4호
    • /
    • pp.275-280
    • /
    • 1995
  • The electron transfer reactions between cis-[Co(en)2(NO2)2]+ and rac-[Co(Y)]2-(Y=EDTA, PDTA, CyDTA) have been investigated in the presence of hydrogen ion. From the kinetic data, it has been found that electron transfer reactions between cis-[Co(en)2(NO2)2]+ and rac-[Co(Y)]2- proceed via inner-sphere pathway by catalysis of hydogen ion. The stereoselectivity in the electron transfer reactions between optically active △-cis-[Co(en)2(NO2)2]+ and rac-[Co(Y)]2- produced 6.0, 2.9, 3.0% e.e.(e.e.=enantiomeric excess) of △-[Co(EDTA)]-, △-[Co(PDTA)]- and △-[Co(CyDTA)]-, respectively. Based upon this observation, it seems that △-cis-[Co(en)2(NO2)2]+ is associated with rac-[Co(Y)]2- at first, and followed by the electron transfer reaction. Therefore, it was suggested that stereoselective electron transfer reaction between △-cis-[Co(en)2(NO2)2]+ and rac-[Co(Y)]2- proceed through both inner-sphere by the proton catalysis and outer-sphere with ionic association.

  • PDF

A Review of Enhanced Oil Recovery Technology with CCS and Field Cases (CCS와 연계한 석유회수증진 기술 동향 및 현장사례 분석)

  • Park Hyeri;Hochang Jang
    • Journal of the Korean Institute of Gas
    • /
    • 제27권3호
    • /
    • pp.59-71
    • /
    • 2023
  • Carbon capture, and storage (CCS) is important for the reduction of greenhouse gases and achieving carbon neutrality. CCS focuses on storing captured CO2 permanently in underground reservoirs. CO2-enhanced oil recovery (CO2-EOR) is one form of CCS, where CO2 is injected into the underground to enhance oil recovery. CO2-EOR not only aids in the extraction of residual oil but also contributes to carbon neutrality by storing CO2 underground continuously. CO2-EOR can be classified into miscible and immiscible methods, with the CO2-water alternating gas (CO2-WAG) technique being a representative approach within the miscible method. In CO2-WAG, water and CO2 are alternately injected into the reservoir, enabling oil production and CO2 storage. The WAG method allows for controlling the breakthrough of injection fluids, providing advantages in oil recovery. It also induces hysteresis in relative permeability during the injection and production process, expanding the amount of trapped CO2. In this study, the effects of enhancing oil recovery and storing CO2 underground during CO2-EOR were presented. Additionally, cases of CO2-EOR application in relation to CCS were introduced.

Effect of Phosphorus Stress on Photosynthesis and Nitrogen Fixation of Soybean Plant under $CO_2$ Enrichment (대기 $CO_2$ 상승시 인산공급이 식물체의 광합성 및 질소고정에 미치는 영향)

  • Sa, Tong-Min
    • Applied Biological Chemistry
    • /
    • 제40권2호
    • /
    • pp.134-138
    • /
    • 1997
  • The objective of this study was to examine the effect of phosphorus deficiency on nitrogen fixation and photosynthesis of nitrogen fixing soybean plant under $CO_2$ enrichment condition. The soybean plants(Glycine max [L.] Merr.) inoculated with Bradyrhizobium japonicum MN 110 were grown with P-stressed(0.05 mM-P) and control(1 mM-P) treatment under control$(400\;{\mu}l/L\;CO_2)$ and enrichment$(800\;{\mu}l/L\;CO_2)$ enviromental condition in the phytotron equipped with high density lamp$(1000\;{\mu}Em^{-2}S^{-1})$ and $28/22^{\circ}C$ temperature cycle for 35 days after transplanting(DAT). At 35 DAT, phosphorus deficiency decreased total dry mass by 64% in $CO_2$ enrichment condition, and 51% in control $CO_2$ condition. Total leaf area was reduced significantly by phosphorus deficiency in control and enriched $CO_2$ condition but specific leaf weight was increased by P deficiency. Phosphorus deficiency significantly reduced photosynthetic rate(carbon exchange rate) and internal $CO_2$ concentration in leaf in both $CO_2$ treatments, but the degree of stress was more severe under $CO_2$ enrichment condition than under control $CO_2$ environmental condition. In phosphorus sufficient plants, $CO_2$ enrichment increased nodule fresh weight and total nitrogenase activity(acetylene reduction) of nodule by 30% and 41% respectively, but specific nitrogenase activity of nodule and nodule fresh weight was not affected by $CO_2$ enrichment in phosphorus deficient plant at 35 DAT. Total nitrogen concentrations in stem, root and nodule tissue were significantly higher in phosphorus sufficient plant grown under $CO_2$ enrichment, but nitrogen concentration in leaf was reduced by 30% under $CO_2$ enrichment. These results indicate that increasing $CO_2$ concentration does not affect plant growth under phosphorus deficient condition and phosphorus stress might inhibit carbohydrate utilization in whole plant and that $CO_2$ enrichment could not increase nodule formation and functioning under phosphorus deficient conditions and phosphorus has more important roles in nodule growth and functioning under $CO_2$ enrichment environments than under ambient condition.

  • PDF

Research on the Production of CO2 Absorbent Using Railway Tie Concrete Waste (콘크리트 철도 침목 폐기물을 활용한 CO2 포집제 제조 연구)

  • Gyubin Lee;Jae-Young Lee;Hyung-Jun Jang;Sangwon Ko;Hye-Jin Hong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제11권3호
    • /
    • pp.260-266
    • /
    • 2023
  • In recent years, excessive emissions of carbon dioxide(CO2) have become the cause of global climate change. Consequently, there has been significant research activity aimed at both removing and utilizing CO2. This study assesses the potential utilization of railway tie concrete waste, generated from railway infrastructure, as a CO2 absorption material and investigates the physicochemical properties before and after CO2 absorption to understand the CO2 removal mechanisms. Railway tie concrete waste primarily consists of Si(26.60 %) and contains 9.82 % of Ca. Compared to samples of Cement and Normal concrete waste, it demonstrated superior potential for use as a CO2 absorption material, with approximately 98 % of the Ca content participating in CO2 absorption reactions. Through Thermogravimetric Analysis(TGA) and X-ray Diffraction(XRD) analysis, it was confirmed that the carbonate reaction, where the Ca in railway tie concrete waste converts into CaCO3 through reaction with CO2 gas, is the primary mechanism for CO2 removal. Furthermore, Scanning Electron Microscopy(SEM) analysis revealed the formation of numerous CaCO3 particles with sizes less than 0.1 ㎛ after the CO2 absorption reaction. This transformation of large internal voids in the CO2 absorption material into mesopores resulted in an increase in the specific surface area of the material.

A Study of the Characteristics of Flow and the Distribution of $CO_2$ Agent Concentration According to the Number of $CO_2$ Agent Nozzle ($CO_2$소화제 노즐수에 따른 유동특성 및 소화제농도분포에 대한 연구)

  • Park Chan-Su
    • Fire Science and Engineering
    • /
    • 제19권2호
    • /
    • pp.37-44
    • /
    • 2005
  • We have conducted a numerical simulation under three-dimensional unsteady conditions in order to analyze the characteristics of flow and the distribution of $CO_2$ agent concentration according to the number of $CO_2$ agent nozzle. The engine room of a ship was selected as a protection space, and flow fields and $CO_2$ concentration fields were measured. In case of increasing the number of $CO_2$ nozzle from 2 nozzles to 4 nozzles, the distribution of CO2 concentration showed low, and in case of increasing the number of $CO_2$ nozzle to above 6 nozzles, the recirculating flow affected to all region was generated. In case of increasing the number of $CO_2$ agent nozzle to above 4 nozzles, the iso-concentration line below 0.36 expanded or contracted slightly. Therefor, the proper number and the arrangement of $CO_2$ agent nozzle are considered when $CO_2$ fire fighting system is designed.

Development of Potassium Impregnated Carbon Absorbents for Indoor CO2 Adsorption (K계열 함침 탄소계 흡착제의 실내 저농도 이산화탄소 흡착성능 강화)

  • Jeong, Se-Eun;Wang, Shuang;Lee, Yu-Ri;Won, Yooseob;Kim, Jae-Young;Jang, Jae Jun;Kim, Hana;Jo, Sung-ho;Park, Young Cheol;Nam, Hyungseok
    • Korean Chemical Engineering Research
    • /
    • 제60권4호
    • /
    • pp.606-612
    • /
    • 2022
  • Relatively high indoor CO2 concentration (>1,000 ppm) has a negative impact on human health. In this work, indoor CO2 adsorbent was developed by impregnating KOH or K2CO3 on commercial activated carbon, named as KOH/AC and K2CO3/AC. Commercial activated carbon (AC) showed relatively high BET surface area (929 m2/g) whereas KOH/AC and K2CO3/AC presented lower BET surface area of 13.6 m2/g and 289 m2/g. Two experimental methods of TGA (2,000 ppmCO2, weight basis) and chamber test (initial concentration: 2,000 ppmCO2, CO2 IR analyzer) were used to investigate the adsorption capacity. KOH/AC and K2CO3/AC exhibited similar adsorption capacities (145~150 mgCO2/g), higher than K2CO3/Al+Si supports adsorbent (84.1 mgCO2/gsample). Similarly, chamber test also showed similar trend. Both KOH/AC and K2CO3/AC represented higher adsorption capacities (KOH/AC: 93.5 mgCO2/g K2CO3/AC: 94.5 mgCO2/gsample) K2CO3/Al+Si supports. This is due to the KOH or K2CO3 impregnation increased alkaline active sites (chemical adsorption), which is beneficial for CO2 adsorption. In addition, the regeneration test results showed both K-based adsorbents pose a good regeneration and reusability. Finally, the current study suggested that both KOH/AC and K2CO3/AC have a great potential to be used as CO2 adsorbent for indoor CO2 adsorption.

Photosynthetic and Growth Responses of Chinese Cabbage to Rising Atmospheric CO2 (대기 중 CO2 농도의 상승에 대한 배추의 광합성과 생장 반응)

  • Oh, Soonja;Son, In-Chang;Wi, Seung Hwan;Song, Eun Young;Koh, Seok Chan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • 제18권4호
    • /
    • pp.357-365
    • /
    • 2016
  • The effects of elevated atmospheric $CO_2$ on photosynthesis and growth of Chinese cabbage (Brassica campestris subsp. napus var. pekinensis) were investigated to predict productivity in highland cropping in an environment where $CO_2$ levels are increasing. Vegetative growth, based on fresh weight of the aerial part, and leaf characteristics (number, area, length, and width) of Chinese cabbage grown for 5 weeks, increased significantly under elevated $CO_2$ ($800{\mu}mol{\cdot}mol^{-1}$) compared to ambient $CO_2$ ($400{\mu}mol{\cdot}mol^{-1}$). The photosynthetic rate (A), stomatal conductance ($g_s$), and water use efficiency (WUE) increased, although the transpiration rate (E) decreased, under elevated atmospheric $CO_2$. The photosynthetic light-response parameters, the maximum photosynthetic rate ($A_{max}$) and apparent quantum yield (${\varphi}$), were higher at elevated $CO_2$ than at ambient $CO_2$, while the light compensation point ($Q_{comp}$) was lower at elevated $CO_2$. In particular, the maximum photosynthetic rate ($A_{max}$) was higher at elevated $CO_2$ by 2.2-fold than at ambient $CO_2$. However, the photosynthetic $CO_2$-response parameters such as light respiration rate ($R_p$), maximum Rubisco carboxylation efficiency ($V_{cmax}$), and $CO_2$ compensation point (CCP) were less responsive to elevated $CO_2$ relative to the light-response parameters. The photochemical efficiency parameters ($F_v/F_m$, $F_v/F_o$) of PSII were not significantly affected by elevated $CO_2$, suggesting that elevated atmospheric $CO_2$ will not reduce the photosynthetic efficiency of Chinese cabbage in highland cropping. The optimal temperature for photosynthesis shifted significantly by about $2^{\circ}C$ under elevated $CO_2$. Above the optimal temperature, the photosynthetic rate (A) decreased and the dark respiration rate ($R_d$) increased as the temperature increased. These findings indicate that future increases in $CO_2$ will favor the growth of Chinese cabbage on highland cropping, and its productivity will increase due to the increase in photosynthetic affinity for light rather than $CO_2$.

Effect of Elevated $\textrm{CO}_2$ and Temperature on the Seedling Characteristics in Green Pepper (Capsicum annuum L. cv, Soonjung) ($\textrm{CO}_2$인 농도 및 온도 환경이 고추의 묘소질에 미치는 영향)

  • 안종길;최영환
    • Journal of Bio-Environment Control
    • /
    • 제11권2호
    • /
    • pp.51-55
    • /
    • 2002
  • Green peppers (Capsicum annuum L. cv, Soonjung) were grown under different combinations of $CO_2$ concentration and temperature levels and examined on the effect of elevated $CO_2$ and temeprature on plant growth, carbon and nitrogen concentrations. Plant height was stimulated by elevated $CO_2$ levels at 20.3 and 22.6$^{\circ}C$. Leaf area and fresh weight were remarkedly increased by high $CO_2$ concentration at 22.6$^{\circ}C$. Dry weights of leaf, stem, root, and whole plant were increased as temperature increased at 611 ppm $CO_2$, but those values decreased at 22.6$^{\circ}C$ in 397 ppm $CO_2$ concentration. Elevated $CO_2$ increased plant growth by 1.5 times at 20.5$^{\circ}C$ and 22.6$^{\circ}C$. C/N ratio increased with increasing temperature under elevated $CO_2$ levels.

Leaching of Cathodic Active Materials from Spent Lithium Ion Battery (폐리튬이온전지로부터 분리한 양극활물질의 침출)

  • 이철경;김태현
    • Resources Recycling
    • /
    • 제9권4호
    • /
    • pp.37-43
    • /
    • 2000
  • Leaching of $LiCoO_2$ as a cathodic active materials for recovering Li and Co from spent lithium ion battery was investigated in terms of reaction variables. At the optimum condition determined in the previous work, Li and Co in a $H_2SO_4$ and $HNO_3$ solution were dissolved 70~80% and 40%, respectively. Li and Co were leached over 95% with the addition of a reductant such as $Na_2S_2O_3$ or $H_2O_2$. This behavior is probably due to the reduction of $Co^{3+}$ to $Co^{2+}$. Leaching of $LiCoCo_2$ powder obtained by calcination of an electrode materials from spent batteries was also carried out. Leaching efficiency of Li and Co were over 99% at the optimum condition with $H_2O_2$ addition of 1.7 vol.%. It seems to be due to the activation of $LiCoO_2$ by repeated charging and discharging or an imperfect crystal structure by deintercalation of Li.

  • PDF

A Numerical Study on the CO2 Leakage Through the Fault During Offshore Carbon Sequestration (해양지중에 저장된 이산화탄소의 단층을 통한 누출 위험 평가에 관한 수치해석 연구)

  • Kang, Kwangu;Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • 제18권2호
    • /
    • pp.94-101
    • /
    • 2015
  • To mitigate the greenhouse gas emission, many carbon capture and storage projects are underway all over the world. In Korea, many studies focus on the storage of $CO_2$ in the offshore sediment. Assurance of safety is one of the most important issues in the geological storage of $CO_2$. Especially, the assessment of possibility of leakage and amount of leaked $CO_2$ is very crucial to analyze the safety of marine geological storage of $CO_2$. In this study, the leakage of injected $CO_2$ through fault was numerically studied. TOUGH2-MP ECO2N was used to simulate the subsurface behavior of injected $CO_2$. The storage site was 150 m thick saline aquifer located 825 m under the continental shelf. It was assumed that $CO_2$ leak was happened through the fault located 1,000 m away from the injection well. The injected $CO_2$ could migrate through the aquifer by both pressure difference driven by injection and buoyancy force. The enough pressure differences made it possible the $CO_2$ to migrate to the bottom of the fault. The $CO_2$ could be leaked to seabed through the fault due to the buoyancy force. Prior to leakage of the injected $CO_2$, the formation water leaked to seabed. When $CO_2$ reached the seabed, leakage of formation water stopped but the same amount of sea water starts to flow into the underground as the amount of leaked $CO_2$. To analyze the effect of injection rate on the leakage behavior, the injection rate of $CO_2$ was varied as 0.5, 0.75, and $1MtCO_2/year$. The starting times of leakage at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 11.3, 15.6 and 23.2 years after the injection, respectively. The leakage of $CO_2$ to the seabed continued for a period time after the end of $CO_2$ injection. The ratios of total leaked $CO_2$ to total injected $CO_2$ at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 19.5%, 11.5% and 2.8%, respectively.