• Title/Summary/Keyword: $CH_4$ concentration

Search Result 545, Processing Time 0.027 seconds

Effect of the Salt Concentration in Seafood Wastewater on the High-Rate Anaerobic Digestion (수산물 가공폐수내 염분농도가 고율 혐기성 소화에 미치는 영향)

  • Choi, Yong-Bum;Han, Dong-Joon;Lee, Hae-Seung;Kwon, Jae-Hyouk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.730-736
    • /
    • 2013
  • This study was conducted to examine the effects of the salt concentration in seafood wastewater on the high-rate anaerobic digestion process. In the general high-rate anaerobic process test, the TCODcr removal efficiency at 6 hr or more HRT was 81.1~0.7%, and the optimal HRT for seafood wastewater process was found to be 6 hr or more. The methane content in the biogas was 70.1~76.8% during the operation, and was hardly affected by the change in the influent load. The results of the anaerobic digestion efficiency according to the salt concentration showed that the removal efficiency of TCODcr was 83.4~89.2% below a $4,000mgCl^-/L$ salt concentration, and mid-70% at a $5,000mgCl^-/L$ salt concentration. Therefore, the salt concentration had to be kept below $4,000mgCl^-/L$ to ensure stable treatment efficiency. Below a $3,000mgCl^-/L$ salt concentration, the methane generation was 0.2999~0.346$m^3CH_4/kgCODrem.$, which was similar to the theoretical methane gas generation in STP condition ($0.35m^3CH_4/gTCODrem.$). The methane content in the biogas was 64.7~73.3% below a $3,000mgCl^-/L$ salt concentration, but decreased with an increase in the salt concentration, to 50.1~56.9% at a $4,000mgCl^-/L$ concentration.

Research on the Methane Recovery from Landfill Gas by Applying Nitrogen Gas Separator Membrane (질소 분리용 막을 이용한 매립가스내 메탄 회수 연구)

  • Chun, Seung-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.586-591
    • /
    • 2013
  • This experiment was performed to enhance $CH_4$ purity of landfill gas by applying gas separator membrane for purified nitrogen gas production. 1:6 area ratios of $1^{st}$ to $2^{nd}$ membrane module was suitable for $CH_4$ recovery. After separation membrane system was installed, 249 tries were performed. Average permeability for $CH_4$ was 28.4% and for $CO_2$ was 94.3%. This can explain nitrogen gas separator membrane can be applied to collect $CH_4$ from LFG. However, nitrogen permeability only reached up to 16.5%. Therefore, the final purified landfill gas concentration was rounded up to 69.7% for $CH_4$, 4.3% for $CO_2$ and 26.0% for $N_2$. For the high degree of $CH_4$ purity, $N_2$ should be kept at least under 2.0% by controlling air inflow to landfill.

Effects of Residual Hypochlorite Ion on Methane Production during the Initial Anaerobic Digestion Stage of Pig Slurry

  • Yoon, Young-Man;Kim, Hyun-Cheol;So, Kyu-Ho;Kim, Chang-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.1
    • /
    • pp.122-127
    • /
    • 2013
  • The hypochlorite ion ($OCl^-$) is a widely used disinfecting agent in pig rearing in Korea, but its residual effect on $CH_4$ production from pig slurry is unclear. The objective of this study was to investigate the inhibition effects of residual $OCl^-$ on $CH_4$ production during the initial anaerobic digestion stage of pig slurry. Three organic concentrations (9.9, 26.2 and 43.7 g/L) of volatile solids (VS) were tested with the addition of 52.3 mg/L $OCl^-$, ten times of the typical concentration used in Korea, or without $OCl^-$ (Control) in anaerobic batch culture. The culture was run under mesophilic ($38^{\circ}C$) conditions for 20 d. At the lowest organic concentration with $OCl^-$, the VS degradation was 10.3% lower (p<0.05) than Control, while at the higher organic concentration with $OCl^-$, it did not differ from Control. $CH_4$ yields were higher in the control treatments than their $OCl^-$ counterpart cultures, and $CH_4$ yields of Control and $OCl^-$ treatments at the organic concentrations of 9.9, 26.2 and 43.7 g/L differed in the probability level (p) of 0.31, 0.04, and 0.06, respectively. Additionally, $CH_4$ concentration increased steeply and reached 70.0% within 4 d in the absence $OCl^-$, but a gradual increase up to 60.0% was observed in 6 d in the $OCl^-$ treated cultures. The $R_m$ (the maximum specific $CH_4$ production rate) and ${\lambda}$ (lag phase time) of 9.9 g/L with $OCl^-$ were 8.1 ml/d and 25.6 d, while the $R_m$ was increased to 15.1 ml/d, and ${\lambda}$ was reduced to 11.4 d in PS-III (higher organic concentration) with $OCl^-$. The results suggest that a prolonged fermentation time was necessary for the methanogens to overcome the initial $OCl^-$ inhibitory effect, and an anaerobic reactor operated with high organic loadings was more advantageous to mitigate the inhibitory effect of residual hypochlorite ion.

A Study on Measurement of NO Concentrations in Burner Flames by LIF (레이저 유도 형광법(LIF)을 이용한 버너 화염의 NO 농도측정에 관한 연구)

  • Park, K.S.;Kim, S.W.
    • Journal of ILASS-Korea
    • /
    • v.7 no.4
    • /
    • pp.42-49
    • /
    • 2002
  • In this study, quantitative measurement of nitric oxide concentration distributions were investigated in the laminar CH4/O2/N2 premixed flame by laser-induced fluorescence (LIF). The NO A-X (0,0) vibrational band around 226nm was excited using a XeCl excimer-pumped dye laser. Selecting an appropriate NO transition minimizes interference from Rayleigh scattering and O2 fluorescence. The measurements were taken in CH4/O2/N2 premixed flame with equivalence ratios varying from $1.0{\sim}1.6$, and a fixed flowrate of 5slpm. NO was found to produce primarily between an inner premixed and an outer nonpremixed flame front, and total NO concentration is raised when equivalence ratios increase. These results suggest that prompt NO is likely to contribute to NO formation in CH4/O2/N2 premixed flame. Furthermore, this trend was well matched with previous works.

  • PDF

Biogas Production from Sewage Sludge in 30L Microbial Electrolysis Cell (30L 미생물전기분해전지의 하수슬러지로부터 바이오가스 생산 특성)

  • Lee, Myoung-Eun;Ahn, Yongtae;Shin, Seung Gu;Seo, Sun-Chul;Chung, Jae Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.25-33
    • /
    • 2019
  • Operating characteristics of a 30 L microbial electrolysis cell (MEC) for producing biogas from sewage sludge was studied. During the 32-day inoculation period, carbon dioxide concentration decreased and methane concentration increased with operating time, and the overall methane content of biogas was 69.1% with a production rate of 171.6 mL CH4/L·d. In fed-batch experiments for 6 operating cycles, CH4 concentration of 66.5~77.2% was obtained at a production rate of 184.9~372.9 mL CH4/L·d, COD, TS and VS removal efficiency ranged from 28.2 to 42.1%, 20.7 to 37.5% and 18.5 to 36.9%, respectively. The MEC system was observed to be stabilized as operating cycles were repeated after inoculation. In the last operating cycle, 5221 mL/L of methane was produced with CH4 yield of 316.7 L CH4/kg CODrem, and the energy recovery was 73%.

The Development of a Short Reaction Mechanism for Premixed CH4/CHF3/Air Flames (CH4/CHF3/Air 예혼합 화염의 축소 반응 메카니즘 개발)

  • Lee, Ki Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.39-44
    • /
    • 2014
  • A short reaction mechanism for premixed $CH_4/CHF_3/Air$ flames was developed with a reduction method of the combined application of simulation error minimization (SEM) which included connectivity method and principal component analysis. It consisted of 43 species and 403 elementary reactions at the condition of less than 5% of maximum error. The calculation time operated with a short mechanism was over 5 times faster than one with a detailed reaction mechanism. Good agreement was found between the flame speeds calculated by the short reaction mechanism and those by the detailed reaction mechanism for the entire range of $CHF_3/CH_4$ mole ratios and equivalence ratios. In addition excellent agreements were determined for the profiles of temperature, species concentration, and the production rates of the various species. So the short reaction mechanism was able to accurately predict the flame structure for premixed $CH_4/CHF_3/Air$ flames.

Tuning Behavior of (Cyclic Amines + Methane) Clathrate Hydrates and Their Application to Gas Storage (고리형 아민이 포함된 메탄 하이드레이트의 튜닝과 가스 저장 연구)

  • Ki Hun Park;Dong Hyun Kim;Minjun Cha
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.394-400
    • /
    • 2023
  • In this study, the tuning phenomena, gas storage capacity, and thermal expansion behaviors of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were investigated for the potential applications of clathrate hydrates to gas storage. To understand the tuning behaviors of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates, 13C solid-state NMR spectroscopy was used, and the results confirmed that maximum tuning factors for the binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were achieved at 0.5 mol% and 1.0 mol% of guest concentration, respectively. The gas storage capacity of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were also checked, and the results showed the CH4 capacity of our hydrate systems was superior to that of binary (tetrahydrofuran + CH4) and (cyclopentane + CH4) clathrate hydrates. The synchrotron diffraction patterns of these hydrates collected at 100, 150, 200, and 250 K confirmed the formation of a cubic Fd-3m hydrate. In addition, the lattice constant of clathrate hydrates with cyclopentylamine and methane were larger than that with cyclopropylamine and methane due to the effects of molecular size and shape.

Deposition of diamond thin film by MPECVD method (마이크로웨이브 화학 기상 증착법을 이용한 다이아몬드 박막의 증착)

  • Sung Hoon Kim;Young Soo Park;Jo-Won Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.92-99
    • /
    • 1994
  • Diamond thin film was deposited on n type (100) Si substrate by MPECVD(Microwave plasma Enhanced Chemical Vapor Deposition). For the increase in nucleation density of diamond, Si substrate was pretreated by diamond powder or negative bias voltage was applied to the substrate during the initial deposition. In the case of retreated Si substrate, the diamond thin film quality was enhanced with increasing the total pressure in the range of 20~150 Torr. For the negative bias voltage, the formation condition of the diamond was seriously affected by $CH_4$ concentration and total pressure. The formation condition will be discussed with electrical current of substrate generated by plasma ions which depend on $CH_4$concentration, bias voltage, and total pressure.

  • PDF

Control the crystal size by varying concentrations of precursors for the planar perovskite solar cells

  • Xie, Lin;Hwang, Heewon;Kim, Minjung;Kim, Kyungkon
    • Rapid Communication in Photoscience
    • /
    • v.4 no.4
    • /
    • pp.79-81
    • /
    • 2015
  • The influence of the grain size of the $CH_3NH_3PbI_3$ on the solar cell performance is investigated by controlling the ratio between $CH_3NH_3I$ and $PbI_2$ precursors. As the concentration of the precursors increased from 1.0M to 2.0M, the $CH_3NH_3PbI_3$ grain size increased from ~100nm to ~400nm. The solar cell utilizing the $CH_3NH_3PbI_3$ with large grain size shows improved photocurrent compared to the solar cell utilizing $CH_3NH_3PbI_3$ with small grain size, which is ascribed to the reduced recombination at the boundaries of grains.

A Study on the Reaction Optimization for the Utilization of CO2 and CH4 from Bio-gas (바이오가스에서 CO2/CH4 활용에 관한 반응최적화 연구)

  • KHO, DONGHYUN;CHO, WOOKSANG;BAEK, YOUNGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.5
    • /
    • pp.554-561
    • /
    • 2016
  • Depending on the Bio-gas sources, main component gases of $CH_4$ and $CO_2$ are shown to be variously present in amounts. For the anaerobic digester, The concentration of $CH_4$ and $CO_2$ in the gases are 60~70 and 30~35 vol%. For the landfill gas, $CH_4$ and $CO_2$ are 40~60 and 40~60 vol%. For the food wastes, $CH_4$ and $CO_2$ are 60~80 and 20~40 vol%, respectively. In this study, maximum conversion rates of $CO_2$ were obtained from the variety of concentrations of $CH_4$ and $CO_2$ by the catalysts of reforming reactions. Moreover, in order to get maximum producing amount of synthetic gas, experimental studies were performed to optimize the reaction variables. On the basis of $CH_4$, 243 ml, R [$CH_4/(O2+CO_2)$] value were varied from 0.8 to 1.35, in the study of $CH_4$ and $CO_2$ reforming reactions. It was shown that the optimal results were obtained for 1.35 of R value. And also, at $850^{\circ}C$ and 1 atm, the production rate of synthetic gas was 90% and the conversion rates of $CH_4$ and $CO_2$ were higher than 99% and 90%, respectively.