• Title/Summary/Keyword: $CH_4$ Gas

Search Result 1,172, Processing Time 0.029 seconds

Development of High-Permeability Ceramic Hollow Fiber and Evaluation of CH4/CO2 Separation Characteristics of Membrane Contactor Process (고투과성 세라믹 중공사 개발과 접촉막 공정의 CH4/CO2 분리 특성 평가)

  • Lee, Seung Hwan;Kim, Min Kwang;Jeong, Byeong Jun;Zhuang, Xuelong;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.269-275
    • /
    • 2020
  • In this study, CO2 separation experiment was performed on a CH4/CO2 mixed gas using a ceramic hollow fiber membrane contactor (HFMC). In order to fabricate high-performance HFMC, experiments were conducted to manufacture high-permeability hollow fiber membranes, and the prepared hollow fiber membranes were evaluated through N2 gas permeation experiments. HFMC for CH4/CO2 mixed gas separation was manufactured using the manufactured high-permeability hollow fiber membrane. In the experiment, mixed gas of CH4/CO2 (34.5% CO2, CH4 balance) and monoetanolamine (MEA) was used, and the effect of CO2 removal efficiency on the flow rate of the absorbent was evaluated. The CO2 removal efficiency increased as the liquid flow rate increased, and the CO2 absorption flux also increased with the liquid flow rate.

Hydrocarbon Gas Permeation Characteristics of PTMSP/LDH Composite Membranes (PTMSP/LDH 복합막의 탄화수소 기체투과 특성)

  • Jeong, Yeon-Eim;Lee, Hyun-Kyung
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.423-430
    • /
    • 2014
  • PTMSP/LDH composite membranes were prepared by adding 0, 1, 3, and 5 wt% LDH contents to PTMSP. The gas permeability and selectivity for $H_2$, $N_2$, $CH_4$, $C_3H_8$, $n-C_4H_{10}$ were investigated as a function of LDH content. As LDH content of PTMSP/LDH composite membranes increased to 5 wt%, the gas permeability for $H_2$ and $N_2$ gradually decreased, while $n-C_4H_{10}$ permeability rapidly increased. The gas permeability for $CH_4$ and $C_3H_8$ was found to decrease for the membranes with LDH content range of 0~3 wt%, however increase in the range of 3~5 wt%. As LDH content of PTMSP/LDH composite membranes increased to 5 wt%, the selectivity of membranes gradually increased for $H_2$, $N_2$, $CH_4$, $C_3H_8$, $n-C_4H_{10}$ over $H_2$, $N_2$. However the selectivity for $C_3H_8$ and $n-C_4H_{10}$ over $CH_4$ increased in the range of LDH content 0~3 wt% but decreased in the range of 3~5 wt%. The $CH_4$ and $n-C_4H_{10}$ selectivity over $H_2$ and $N_2$ increased as $CH_4$ and $n-C_4H_{10}$ permeability increased. The $n-C_4H_{10}$ selectivity over $CH_4$ increased with increasing $n-C_4H_{10}$ permeability up to 182,000 barrer and decreased above 182,000 barrer of $n-C_4H_{10}$ permeability. The $C_3H_8$ selectivity over $H_2$ and $N_2$ was found to decrease as the $C_3H_8$ permeability increased from 46,000 to 50,000 barrer, but to increase with increasing permeability from 50,000 to 52,300 barrer and decrease again with increasing permeability from 52,300 to 60,000 barrer. The $C_3H_8$ selectivity over $CH_4$ was found to decrease with increasing $C_3H_8$ permeability up to 52,300 barrer but increase above 52,300 barrer.

Characteristics of Greenhouse Gas Emissions from Freshwater Wetland and Tidal Flat in Korea (내륙습지와 갯벌에서의 주요 온실기체 배출량 특성연구)

  • Kim, Deug-Soo;Na, Un-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.2
    • /
    • pp.171-185
    • /
    • 2013
  • Wetland has been known as a major biogenic source of $CH_4$ in globe. In a global scale, the amounts of 55~150 Tg $CH_4$ are released into the atmosphere annually from wetlands; and it accounts for about 21% of total $CH_4$ annual global emission. From August 2010 to August 2011, measurements of major greenhouse gas ($CO_2$, $CH_4$, $N_2O$) emissions were conducted from a freshwater wetland at Kunsan ($35^{\circ}56^{\prime}38.94^{\prime\prime}N$, $126^{\circ}43^{\prime}16.62^{\prime\prime}E$), Korea by using floating closed static chamber method. Flux measurements for these gases from western coastal tidal flat at Seocheon ($36^{\circ}07^{\prime}13.85^{\prime\prime}N$, $126^{\circ}35^{\prime}43.18^{\prime\prime}E$), Korea were managed from July 2011 to February 2012 by using closed static chamber method. The average gas fluxes and ranges from freshwater wetland experiment were $0.155{\pm}0.29\;mg\;m^{-2}\;hr^{-1}$ (-0.054~0.942 $mg\;m^{-2}\;hr^{-1}$) for $CH_4$, $17.30{\pm}73.27\;mg\;m^{-2}\;hr^{-1}$ (-52.44~261.66 $mg\;m^{-2}\;hr^{-1}$) for $CO_2$, and $0.004{\pm}0.01\;mg\;m^{-2}\;hr^{-1}$ (-0.02~0.07 $mg\;m^{-2}\;hr^{-1}$) for $N_2O$, respectively. Monthly base flux measurement results revealed that $CH_4$ fluxes during summer months in high water temperature were significantly high, and at least order of one higher than those during other months. The average fluxes and ranges of these greenhouse gases from tidal flat during the experimental period were $0.002{\pm}0.08\;mg\;m^{-2}\;hr^{-1}$ (-0.16~0.22 $mg\;m^{-2}\;hr^{-1}$) for $CH_4$, $-31.18{\pm}75.33\;mg\;m^{-2}\;hr^{-1}$ (-298.87~101.93 $mg\;m^{-2}\;hr^{-1}$) for $CO_2$, and $0.001{\pm}0.01\;mg\;m^{-2}\;hr^{-1}$ (-0.017~0.03 $mg\;m^{-2}\;hr^{-1}$) for $N_2O$, respectively. Comparing the results of gas emissions from tidal flat to those from freshwater wetland, we found significantly lower emissions from tidal flat based on the experiment. Physicochemical parameters of water and soil at these experimental plots were also sampled and analyzed for understanding their correlation with these gas emissions.

Membrane Process Development for $CO_2$ Separation of Flaring Gas (Flaring 가스의 $CO_2$ 분리를 위한 분리막 공정 기술개발)

  • Kim, Se Jong;Kim, Hack Eun;Cho, Won Jun;Ha, Seong Yong
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.384-391
    • /
    • 2013
  • We prepared composite membrane which was made with polysulfone supported hollow fiber membrane coated with Hyflon AD to eliminate $CO_2$ gas from mixed-gases which were generated in DME manufacturing processes. The performance of module about simulated flaring gas was measured by using manufactured composite membrane. 1-stage evaluation result shows $CO_2$ concentration was below 3% at 1.2 MPa and at Stage cut 0.24 above. In addition $CO_2$ removal rate and $CH_4$ recovery rate was 80% respectively at the same condition. 2-stage evaluation result shows, when the $CO_2$ concentration of product gas was fixed at 5%, recycled $CO_2$ at stage cut 0.074 had the same concentration as the feed gas and the recovery rate of $CH_4$ was 99% at the moment.

Study on Basic Characteristics of Natural Gas Autothermal Reformer for Fuel Cell Applications (연료전지용 천연가스 자열개질기의 기초특성 연구)

  • Lim, Sung-Kwang;Nam, Suk-Woo;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.850-857
    • /
    • 2006
  • Hydrogen production using current fueling facilities is essential for near-term applications of fuel cells. A preliminary process for developing a natural gas autothermal reforming (ATR) reactor for fuel cells is presented in this paper. A experimental reactor for methane ATR was constructed and used for characterization of Jin reactor. Temperature profiles of the reactor were observed, and reformed gas compositions were analyzed to evaluate efficiency, conversion and reaction heat with varying amounts of $O_2/CH_4$ at selected furnace temperature and $H_2O/CH_4$. The amount of $O_2/CH_4$ showed strong offsets on reactor temperature, efficiency and conversion indicating that $O_2/CH_4$ is a crucial operation condition. Operation conditions which result in thermal neutrality of ATR reactor system were determined for two cases of an ATR system based on the estimation of enthalpy difference between reactants of assumed inlet temperatures and the products from experimental results. The determined conditions for thermally neutral operations could be used for guidelines to design reformers and for determining the operation parameters of a self sustaining ATR reactor.

Reaction Characteristics of Combined Steam and Carbon Dioxide Reforming of Methane Reaction Using Pd-Ni-YSZ Catalyst (Pd-Ni-YSZ 촉매를 이용한 수증기-이산화탄소 복합개질 반응 특성)

  • Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.382-387
    • /
    • 2018
  • In this study, the reaction characteristics of combined steam and carbon dioxide reforming of methane (CSCRM) reaction using Pd-Ni-YSZ catalyst were investigated according to types of catalysts and gas compositions. Catalysts were prepared in the form of powder and porous disk. The injected gases were supplied at different ratios of $CH_4/CO_2/H_2O$. As a result, the conversion of $CH_4$ and $CO_2$ was improved as a result of using the porous disc type catalyst as compared with that of the powder type catalyst. When the $CH_4/CO_2/H_2O$ ratio of the feed gas was 1 : 0.5 : 0.5, the $H_2/CO$ ratio was adjusted close to 2. However, after 6 hours of the reaction, $CH_4$ conversion was partially reduced by the carbon deposition and the pressure drop increased from 0.1 to 0.8. This issue was then solved by optimizing the water content. As a result, it was confirmed that the durability was secured by preventing the carbon deposition when the gas was supplied at a $CH_4/CO_2/H_2O$ ratio of 1 : 0.5 : 1, and the conversion rate was maintained at a relatively high level.

Fabrication of ZnO thin film gas sensor for detecting $(CH_3)_3N$ gas ($(CH_3)_3N$ 가스 감지용 ZnO 박막 가스 센서의 제조)

  • 신현우;박현수;윤동현;홍형기;권철한;이규정
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.21-26
    • /
    • 1995
  • Highly sensitive and mechanically stable gas sensors have been fabricated using the microfabrication and micromaching techniques. The sensing material used to detect the offensive trimethylarnine ((CH$_{3}$)$_{3}$N) gas is 6 wt% $Al_{2}$O$_{3}$-doped, 1000.angs.-thick ZnO deposited by r. f. magnetron sputtering. The optimum operating temperature of the sensor is 350.deg.C and the corresponding heater power is about 85mW. Excellent thermal insulation is achieved by the use of a double-layer structure of 0.2.mu.m -thick silicon nitride and 1.4.mu.m-thick phosphosilicate glass(PSG) prepared by low pressure chemical vapor deposition(LPCVD) and atmospheric pressure chemical vapor deposition(APCVD), respectively. The sensors are mechanically stable enough to endure at least 43, 200 heat cycles between room temperature and 350.deg. C.

  • PDF

Development of Greenhouse Gas (CH4 and N2O) Emission Factors for Anthracite Fired Power Plants in Korea (국내 무연탄 화력발전소의 온실가스 배출계수 개발 - CH4, N2O를 중심으로 -)

  • Lee, See-Hyung;Kim, Jin-Su;Lee, Seong-Ho;Sa, Jae-Hwan;Kim, Ki-Hyun;Jeon, Eui-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.6
    • /
    • pp.562-570
    • /
    • 2009
  • Although anthracite power plant acts as the important source of greenhouse gas emissions, relatively little is known about its emission potentials. Especially, because the emissions of Non-$CO_2$ greenhouse gas $CH_4$ and $N_2O$ are strongly dependent on fuel type and technology available, it is desirable to obtain the information concerning their emission pattens. In this study, the anthracite power plants in Korea were investigated and the emission gases were analyzed using GC/FID and GC/ECD to develop Non-$CO_2$ emission factors. The anthracite samples were also analyzed to quantity the amount of carbon and hydrogen using an element analyzer, while calorie was measured by an automatic calorie analyzer. The emission factor of $CH_4$ and $N_2O$ computed through the gas analysis corresponded to 0.73 and 1.98 kg/TJ, respectively. Compared with IPCC values, the $CH_4$ emission factor in this study was about 25% lower, while that of $N_2O$ was higher by about 40%. More research is needed to extend our database for emission factors of various energy-consuming facilities in order to stand on a higher position.

Study on the Promotion Effect of Ionic Liquid on CH4 Hydrate Formation (이온성 액체를 이용한 메탄 하이드레이트 생성 촉진효과 연구)

  • Shin, Ju-Young;Kim, Kisub;Kang, Seong-Pil;Mun, Sungyong
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.500-505
    • /
    • 2013
  • In this study, we investigated the kinetics of gas hydrate formation in the presence of ionic liquid (IL). Hydroxyethyl-methyl-morpholinium chloride (HEMM-Cl) was chosen as a material for the promotion effect test. Phase equilibrium curve for $CH_4$ hydrate with aqueous IL solution was obtained and its induction time and consumed amount of $CH_4$ gas were also measured. Aqueous solutions containing 20~20,000 ppm of HEMM-Cl was prepared and studied at 70 bar and 274.15 K. To compare the measured results to those of the conventional promoter, sodium dodecyl sulfate was also tested at the same condition. Result showed that the hydrate equilibrium curve was shifted toward higher pressure and lower temperature region. In addition, the induction time on $CH_4$ hydrate formation in the presence of IL was not shown. The amount of consumed $CH_4$ was increased with the whole range of tested concentration of IL and the highest consumption of $CH_4$ happened at 1,000 ppm of HEMM-Cl. HEMM-Cl induced and enhanced the $CH_4$ hydrate formation with a small amount of addition. Obtained result is expected to be applied for the development of technologies such as gas storage and transport using gas hydrates.

Investigation on Etch Characteristics of FePt Magnetic Thin Films Using a $CH_4$/Ar Plasma

  • Kim, Eun-Ho;Lee, Hwa-Won;Lee, Tae-Young;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.167-167
    • /
    • 2011
  • Magnetic random access memory (MRAM) is one of the prospective semiconductor memories for next generation. It has the excellent features including nonvolatility, fast access time, unlimited read/write endurance, low operating voltage, and high storage density. MRAM consists of magnetic tunnel junction (MTJ) stack and complementary metal-oxide semiconductor (CMOS). The MTJ stack is composed of various magnetic materials, metals, and a tunneling barrier layer. For the successful realization of high density MRAM, the etching process of magnetic materials should be developed. Among various magnetic materials, FePt has been used for pinned layer of MTJ stack. The previous etch study of FePt magnetic thin films was carried out using $CH_4/O_2/NH_3$. It reported only the etch characteristics with respect to the variation of RF bias powers. In this study, the etch characteristics of FePt thin films have been investigated using an inductively coupled plasma reactive ion etcher in various etch chemistries containing $CH_4$/Ar and $CH_4/O_2/Ar$ gas mixes. TiN thin film was employed as a hard mask. FePt thin films are etched by varying the gas concentration. The etch characteristics have been investigated in terms of etch rate, etch selectivity and etch profile. Furthermore, x-ray photoelectron spectroscopy is applied to elucidate the etch mechanism of FePt thin films in $CH_4$/Ar and $CH_4/O_2/Ar$ chemistries.

  • PDF