• Title/Summary/Keyword: $CD4^+CD25^+Foxp3^+T$ cell

Search Result 33, Processing Time 0.028 seconds

Alteration of $CD4^+CD25^+Foxp3^+$ T cell level In Kawasaki disease

  • Sohn, Su-Ye;Song, Young-Wooh;Yeo, Yun-Ku;Kim, Yun-Kyung;Jang, Gi-Young;Woo, Chan-Wook;Lee, Jung-Hwa;Lee, Kwang-Chul
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.4
    • /
    • pp.157-162
    • /
    • 2011
  • Purpose: Exaggerated pro-inflammatory reactions during the acute phase of Kawasaki disease (KD) suggest the role of immune dysregulation in the pathogenesis of KD. We investigated the profiles of T regulatory cells and their correlation with the clinical course of KD. Methods: Peripheral blood mononuclear cells were collected from 17 KD patients during acute febrile and subacute afebrile phases. T cells expressing CD4, CD25, and Foxp3 were analyzed using flow cytometry, and the results were correlated with the clinical course of KD. Results: The percentage of circulating $CD4^+CD25^{high}Foxp3^+$ T cells among $CD4^+$ T cells was Significantly higher during the subacute afebrile phase than during the acute febrile phase ($1.10%{\pm}1.22%$ vs. $0.55%{\pm}0.53%$, P=0.049). Although levels of $CD4^+CD25^{low}Foxp3^+$ T cells and $CD4^+CD25^-Foxp3^+$ T cells were only slightly altered, the percentage of $CD4^+CD25^+Foxp3^-$ T cells among $CD4^+$ T cells was significantly lower during the subacute afebrile phase than during the acute febrile phase ($2.96%{\pm}1.95%$ vs. $5.64%{\pm}5.69%$, P=0.036). Consequently, the ratio of $CD25^{high}Foxp3^+$ T cells to $CD25^+Foxp3^-$ T cells was higher during the subacute afebrile phase than during the acute febrile phase ($0.45%{\pm}0.57%$ vs. $0.13%{\pm}0.13%$, P=0.038). Conclusion: Decreased $CD4^+CD25^{high}Foxp3^+$ T cells and/or an imbalanced ratio of $CD4^+CD25^{high}Foxp3^+$ T cells to $CD4^+CD25^+Foxp3^-$ T cells might playa role in KD development. Considering that all KD patients were treated with intravenous immunoglobulin (IVIG), recovery of $CD4^+CD25^{high}Foxp3^+$ T cells during the subacute afebrile phase could be a mechanism of IVIG.

Tumor Induces the Expansion of Foxp3+CD25high and CD11b+Gr-1+ Cell Population in the Early Phase of Tumor Progression

  • Lee, Na Kyung;Kim, Hong Sung
    • Biomedical Science Letters
    • /
    • v.21 no.4
    • /
    • pp.172-180
    • /
    • 2015
  • It is well reported that tumor cells can regulate host immune systems. To identify the detailed changes of immune cells between tumor bearing mice and normal mice, we evaluated the systemic immune cell phenotype of B16F10 tumor bearing mice in a time dependent manner. The lymphocytic population (CD4+ and CD8+ T cells) of tumor bearing mice significantly decreased compared to that of normal mice. We found that the Foxp3+CD25+ CD4 T cell decreased, but the Foxp3+$CD25^{high}$ CD4 T cell significantly increased. All subpopulations of CD8 T cells decreased, except the CD62L-CD44+ CD8 T cell subpopulation. The myeloid cell population (CD11b+ and Gr-1+ cells) of tumor bearing mice significantly increased. Specifically, Foxp3+$CD25^{high}$ CD4 T cell and CD11b+Gr-1+ cells significantly increased in early phase of tumor progression. These results are helpful to understand the change of the systemic immune cell subpopulation of tumor bearing mice in a time-dependent manner.

Peripheral Generation of $CD4^+CD25^+Foxp3^+$ Regulatory T Cells

  • Kim, Byung-Seok;Park, Young-Jun;Kang, Chang-Yuil
    • IMMUNE NETWORK
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • [ $CD4^+CD25^+$ ] regulatory T cells (Tregs) expressing the lineage-specific marker Foxp3 represent an important regulatory T cell that is essential for maintaining peripheral tolerance. Although it was believed that Treg development is solely dependent on the thymus, accumulating evidence demonstrates that Tregs can also be induced in the periphery. Considering the various origins of peripherally developed $CD4^+CD25^+Foxp3^+$ regulatory T cells, it seems likely that multiple factors are involved in the peripheral generation of Tregs.

The expression of Foxp3 protein by retroviral vector-mediated gene transfer of Foxp3 in C57BL/6 mice (C57BL/6 마우스에서 Retroviral 벡터를 이용한 Foxp3 유전자의 도입에 의한 Foxp3 단백의 발현 양상)

  • Hwang, Insun;Ha, Danbee;Bing, So Jin;Jeon, Kyong-Leek;Ahn, Ginnae;Kim, Dae Seung;Cho, Jinhee;Lim, Jaehak;Im, Sin-Hyeog;Hwang, Kyu-Kye;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.3
    • /
    • pp.183-191
    • /
    • 2012
  • The maintenance of peripheral immune tolerance and prevention of chronic inflammation and autoimmune disease require $CD4^{+}CD25^{+}$ T cells (regulatory T cells). The transcription factor Foxp3 is essential for the development of functional, regulatory T cells, which plays a prominent role in self-tolerance. Retroviral vectors can confer high level of gene transfer and transgene expression in a variety of cell types. Here we observed that following retroviral vector-mediated gene transfer of Foxp3, transductional Foxp3 expression was increased in the liver, lung, brain, heart, muscle, spinal cord, kidney and spleen. One day after vector administration, high levels of transgene and gene expression were observed in liver and lung. At 2 days after injection, transductional Foxp3 expression level was increased in brain, heart, muscle and spinal cord, but kidney and spleen exhibited a consistent low level. This finding was inconsistent with the increase in both $CD4^{+}CD25^{+}$ T cell and $CD4^{+}Foxp3^{+}$ T cell frequencies observed in peripheral immune cells by fluorescence-activated cell-sorting (FACS) analysis. Retroviral vector-mediated gene transfer of Foxp3 did not lead to increased numbers of $CD4^{+}CD25^{+}$ T cell and $CD4^{+}Foxp3^{+}$ T cell. These results demonstrate the level and duration of transductional Foxp3 gene expression in various tissues. A better understanding of Foxp3 regulation can be useful in dissecting the cause of regulatory T cells dysfunction in several autoimmune diseases and raise the possibility of enhancing suppressive functions of regulatory T cells for therapeutic purposes.

Effects of PGA-LM on CD4+CD25+foxp3+ Treg Cell Activation in Isolated CD4+ T Cells in NC/Nga Mice (NC/Nga 생쥐에서 분리한 T 세포에서 foxp3+ 세포 활성화에 대한 PGA-LM의 효과)

  • Jang, Soon-Nam;Kim, Kum-Lan;Kang, Sang-Mo
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.160-169
    • /
    • 2009
  • Poly-$\gamma$-glutamic acid ($\gamma$-PGA) was mixed natural flora of Bacillus subtilis, contaminated from cooked soybeans. Also, it was performed to find out the antiallergic activity by using NC/Nga mice, in vitro. The $\gamma$-PGA (PGA-HM : PGA-high molecular weight), Molecular weight 300 kDa, was decomposed and made PGA-LM (PGA-low molecular weight) which has molecular weight below 30 kDa by sonication. Therefore, it was same result between PGA-HM and PGA-LM, and reported PGA-LM as basic result. We found that PGA-LM contains antiallergic efficacy that inhibit B cells and Th2 cells activation from isolated CD4+T cells in NC/Nga atopic dermatitis model mice, and not show a cytotoxicity in the hFCs. To investigate the effects of these PGA-LM in vitro, isolation of splenic B cell and CD4+ T cells in atopic dermatitis mice were used. To elucidate the role of PGA-LM in anti-CD40+ interleukin-4 (IL-4)-mediated B-cell activation, showed that the capacity of B cells to expression IL-$1\beta$, IL-6, and TNF-$\alpha$ mRNA down-regulated, and IL-10 mRNA up-regulation by PGA-LM treatment, but it had no effect on TGF-$\beta$ expression. In addition to CD4+IFN-$\gamma$+ and CD4+CD25+foxp3+, the functions of PGA-LM in the development of the CD4+CD25+foxp3+ and CD4+IFN-$\gamma$+cells, the phenotype and functions of PGA-LM induced CD4+CD25+foxp3+, and CD4+IFN-$\gamma$+cells in CD4+T cells. These results suggested that PGA-LM could change cytokine production and generate CD4+CD25+foxp3+ Tregs in NC/Nga mice, and may be effective for immunotherapy in patients with AD.

Induction of CD4+ Regulatory and Polarized Effector/helper T Cells by Dendritic Cells

  • Manfred B. Lutz
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.13-25
    • /
    • 2016
  • Dendritic cells (DCs) are considered to play major roles during the induction of T cell immune responses as well as the maintenance of T cell tolerance. Naive CD4+ T cells have been shown to respond with high plasticity to signals inducing their polarization into effector/helper or regulatory T cells. Data obtained from in vitro generated bone-marrow (BM)-derived DCs as well as genetic mouse models revealed an important but not exclusive role of DCs in shaping CD4+ T cell responses. Besides the specialization of some conventional DC subsets for the induction of polarized immunity, also the maturation stage, activation of specialized transcription factors and the cytokine production of DCs have major impact on CD4+ T cells. Since in vitro generated BM-DCs show a high diversity to shape CD4+ T cells and their high similarity to monocyte-derived DCs in vivo, this review reports data mainly on BM-DCs in this process and only touches the roles of transcription factors or of DC subsets, which have been discussed elsewhere. Here, recent findings on 1) the conversion of naive into anergic and further into Foxp3- regulatory T cells (Treg) by immature DCs, 2) the role of RelB in steady state migratory DCs (ssmDCs) for conversion of naive T cells into Foxp3+ Treg, 3) the DC maturation signature for polarized Th2 cell induction and 4) the DC source of IL-12 for Th1 induction are discussed.

Increased Frequency of Foxp3+ Regulatory T Cells in Mice with Hepatocellular Carcinoma

  • Du, Yong;Chen, Xin;Huang, Zhi-Ming;Ye, Xiao-Hua;Niu, Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3815-3819
    • /
    • 2012
  • The CD4+CD25+ regulatory T cell (Treg) is a special kind of T cell subset. Studies have showed that Treg cells are involved in a number of physiological processes and pathologic conditions such as autoimmune diseases, transplantation tolerance and cancer. Tregs with unique capacity for immune inhibition can impair anti-tumour immunity and help tumor cells to escape from immune surveillance. The aim of our study was to investigate whether Tregs are involved in hepatocellular carcinoma (HCC). A BABL/C mouse with HCC in situ model was established to evaluate the Treg existence in carcinoma tissues and the changes of Tregs in spleen using flow cytometry and immunohistochemistry methods. Granzyme B expression in carcinoma tissues was analyzed by immunohistochemistry to investigate the tumor local immune status.The proportion of CD4+CD25+/CD4+ spleen lymphocytes of tumor bearing mice ($18.8%{\pm}1.26%$) was found to be significantly higher than that in normal mice ($9.99%{\pm}1.90%$) (P<0.01 ). Immunohistochemistry of spleen tissue also confirmed that there was an increase in Treg in tumor-bearing mice, while in carcinomas it showed Treg cells to be present in tumor infiltrating lymphocyte areas while Granzyme B was rarely observed. Anti-tumour immunity was suppressed, and this might be associated with the increase of Tregs. Our observations suggest that the CD4+CD25+Treg/CD4+ proportion in spleen lymphocytes can be a sensitive index to evaluate the change of Tregs in hepatocellular carcinoma mice and the Treg may be a promising therapeutic target for cancer.

Effect of SoPungDoJeokTang-KaMi on cytokine expression with $CD4^+/CD25^+/foxp3^+$ (Treg) cell induction in atopic dermatitis-like skin lesions and IgE hyperproduction induced in NC/Nga mice (소풍도적탕가미(消風導赤湯加味)가 IgE 과대생산과 피부염이 발진된 NC/Nga생쥐의 비장세포에서 $CD4^+/CD25^+/foxp3^+$ Treg 증진에 의한 유전자 발현에 미치는 영향)

  • Han, Dal-Soo;Han, Jae-Kyung;Kim, Yun-Hee
    • Journal of Haehwa Medicine
    • /
    • v.18 no.1
    • /
    • pp.29-41
    • /
    • 2009
  • Wished to examine closely effect that SoPungDoJeokTang-KaMi (SPDJTK) medicines used to atopy dermatitis disease patient get in atopy eruption control experimentally. SPDJTK medicines controlled $CD4^+/IFN-\gamma$, and $CD4^+/CD25^+/foxp3^+$ revelation that an experiment that motive allergy immune reponse because an in vitro experiment stimulates T cells of a NC/Nga mouse same time by anti-CD40/rmIL-4, and interleukin-$1{\beta}$, IL-6, TNF-$\alpha$, and TGF-$\beta$ mRNA outturn that bear in T and B cells decreased remarkably by SPDJTK medicines. Intracellular staining of splenocytes anti-CD40/rmIL-4 plus rmIL-4 stimulated as described in a, assessed after 24 h, SPDJTK exerts a mainly immunosuppressive effect that acts at least partially through suppression of the transcription factor GATA3 expression in $CD4^+$ T cells. Atopic dermatitis (AD) usually develops in patients with an individual or family history of allergic diseases, and is characterized by chronic relapsing inflammation seen specially in childhood, association with IgE hyperproduction and precipitation by environmental factors. However, the exact etiology of AD has been unclear. To further explore the pathogenesis and treatment of AD, a suitable animal model is required. We found that skin lesions, which were clinically and histologically very similar to human AD, mite antigen-induced dermatitis on the face, neck, ears and dorsal skin of inbred NC/Nga mice. Result that Th1 cell and Th2 cell observe to be shifted by cytokine expression with $CD4^+/CD25^+/foxp3^+$ Treg cells induction by SPDJTK medicines could know that SPDJTK medicines can use usefully in allergy autoimmnune diease.

  • PDF

Activation and Recruitment of Regulatory T Cells via Chemokine Receptor Activation in Trichinella spiralis-Infected Mice

  • Ahn, Jeong-Bin;Kang, Shin Ae;Kim, Dong-Hee;Yu, Hak Sun
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.2
    • /
    • pp.163-171
    • /
    • 2016
  • As most infections by the helminth parasite elicit the recruitment of $CD4^+CD25^+Foxp3^+$ T ($T_{reg}$) cells, many scientists have suggested that these cells could be used for the treatment of immune-mediated inflammation and associated diseases. In order to investigate the distribution and alteration of activated $T_{reg}$ cells, we compared the expression levels of $T_{reg}$ cell activation markers in the ileum and gastrocnemius tissues 1, 2, and 4 weeks after infection. The number of $T_{reg}$ cells was monitored using GFP-coded Foxp3 transgenic mice. In mice at 1 week after Trichinella spiralis infection, the number of activated $T_{reg}$ cells was higher than in the control group. In mice at 2 weeks after infection, there was a significant increase in the number of cells expressing Foxp3 and CTLA-4 when compared to the control group and mice at 1 week after infection. At 4 weeks after infection, T. spiralis was easily identifiable in nurse cells in mouse muscles. In the intestine, the expression of Gzmb and Klrg1 decreased over time and that of Capg remained unchanged for the first and second week, then decreased in the 4th week. However, in the muscles, the expression of most chemokine genes was increased due to T. spiralis infection, in particular the expression levels of Gzmb, OX40, and CTLA-4 increased until week 4. In addition, increased gene expression of all chemokine receptors in muscle, CXCR3, CCR4, CCR5, CCR9, and CCR10, was observed up until the 4th week. In conclusion, various chemokine receptors showed increased expressions combined with recruitment of $T_{reg}$ cells in the muscle tissue.

Trichinella spiralis Infection Suppressed Gut Inflammation with $CD4^+CD25^+Foxp3^+$ T Cell Recruitment

  • Cho, Min Kyoung;Park, Mi Kyung;Kang, Shin Ae;Choi, Seon Hee;Ahn, Soon Cheol;Yu, Hak Sun
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.4
    • /
    • pp.385-390
    • /
    • 2012
  • In order to know the effect of pre-existing Trichinella spiralis infection on experimentally induced intestinal inflammation and immune responses, we induced colitis in T. spiralis-infected mice and observed the severity of colitis and the levels of Th1, Th2, and regulatory cytokines and recruitment of $CD4^+CD25^+Foxp3^+$ T (regulatory T; $T_{reg}$) cells. Female C57BL/6 mice were infected with 250 muscle larvae; after 4 weeks, induction of experimental colitis was performed using 3% dextran sulfate sodium (DSS). During the induction period, we observed severity of colitis, including weight loss and status of stool, and evaluated the disease activity index (DAI). A significantly low DAI and degree of weight loss were observed in infected mice, compared with uninfected mice. In addition, colon length in infected mice was not contracted, compared with uninfected mice. We also observed a significant increase in production of pro-inflammatory cytokines, IL-6 and IFN-${\gamma}$, in spleen lymphocytes treated with DSS; however, such an increase was not observed in infected mice treated with DSS. Of particular interest, production of regulatory cytokines, IL-10 and transforming growth factor (TGF)-${\beta}$, in spleen lymphocytes showed a significant increase in mice infected with T. spiralis. A similar result was observed in mesenteric lymph nodes (MLN). Subsets of the population of $T_{reg}$ cells in MLN and spleen showed significant increases in mice infected with T. spiralis. In conclusion, T. spiralis infection can inhibit the DSS-induced colitis in mice by enhancing the regulatory cytokine and $T_{reg}$ cells recruitment.