• 제목/요약/키워드: $C^{*}$-Integral

검색결과 659건 처리시간 0.029초

THE THEORY AND APPLICATIONS OF SECOND-ORDER DIFFERENTIAL SUBORDINATIONS

  • Lee, Jun Rak
    • Korean Journal of Mathematics
    • /
    • 제7권1호
    • /
    • pp.85-101
    • /
    • 1999
  • Let $p$ be analytic in the unit disc U and let $q$ be univalent in U. In addition, let ${\Omega}$ be a set in C and let ${\psi}:c^3{\times}U{\rightarrow}C$. The author determines conditions on ${\psi}$ so that $$\{{\psi}(p(z),zp^{\prime}(z),z^2p^{{\prime}{\prime}}(z);z){\mid}z{\in}U\}{\subset}{\Omega}{\Rightarrow}p(U){\subset}q(U)$$. Applications of this result to differential inequalities, differential subordinations and integral inequalities are presented.

  • PDF

제주 자생식물 고압용매 추출물의 통합적 항산화 능력 (Integral Antioxidative Capacity of Extracts by Pressurized Organic Solvent from Natural Plants in Jeju)

  • 김미보;현선희;박재성;강미애;고영환;임상빈
    • 한국식품영양과학회지
    • /
    • 제37권11호
    • /
    • pp.1491-1496
    • /
    • 2008
  • 제주 자생식물 20종을 대상으로 고압용매 추출(추출용매 100% methanol, 추출 온도 $40^{\circ}C$, 추출 압력 13.6 MPa, 추출 시간 10분)하여 총페놀 함량과 통합적 항산화 능력을 측정하고 폴리페놀 성분을 동정하였다. 추출수율은 붉나무, 말오줌때, 사방오리나무, 사람주나무, 팥배나무가 각각 21.8, 21.5, 21.1, 20.7, 20.1%로 가장 높았다. 총페놀 함량은 아그배가 68.3 mg GAE/g로 가장 높았고, 다음으로 사람주나무, 석위, 말오줌때가 각각 57.6, 56.6, 55.1 mg GAE/g을 나타내었다. 수용성 항산화 능력은 이질풀, 사람주나무, 산딸나무, 붉나무가 각각 598, 394, 293, $270\;{\mu}mol$ ascorbic acid equivalent/g로 높았고, 지용성 항산화 능력은 백량금, 새우나무, 이질풀, 붉가시나무가 611, 314, 296, $242\;{\mu}mol$ trolox equivalent/g로 높았다. GC/MS에 의한 폴리페놀성분을 동정한 결과 15개의 주요 피크를 얻었으며, 그 중 2종의 폴리페놀류(gallic acid(체류시간 19.7분)와 quercetin(체류시간 33.5분)), ascorbic acid(체류시간 35.3분) 그리고 다수의 지방산류(체류시간 18.6, 21.0, 21.8, 21.9, 23.6분)를 확인할 수 있었는데, 이 중 gallic acid는 다른 성분보다 peak area가 높은 것으로 나타나 사람주나무의 가장 중요한 폴리페놀 성분으로 추정되었다.

절삭유 냉각용 낮은 핀관의 응축 및 비등 열전달 성능에 관한 연구 (A Study on the Performance of the Condensation and the Boiling Heat Transfer of Low Fin Tubes Used in Cooling of the Cutting Oil)

  • 이종선
    • 한국생산제조학회지
    • /
    • 제8권4호
    • /
    • pp.68-78
    • /
    • 1999
  • Heat transfer performance is studied for boiling and condensation of R-11 on integral-fin tubes. Nine tubes with trapezoidal integral-fins having fin densities from 748 to 1654fpm and 10,30 grooves and finned tubes with caves of 0.55 and 0.64 mm height respectively are tested. in case of condensation CFC-11 condensates at saturation stat of 32$^{\circ}C$ on the outside surface cooled by inside cooling water flows. And in case of boiling the refrigerant evaporates at a saturation state of 1 bar on the outside tube surface and heat is supplied by hot water which circulates inside of the tube,. The tube having fin transfer coefficient concerns fin tubes with caves show higher valve than low fin tube having find density of 1299fpm and 30grooves. The overall heat transfer coefficient of fin tube with caves is about 5155 W/mK at 2.8m/s of water velocity, The value is abuot 2.7 times higher than plain tube and 1.3 times higher than low fin tube having fin density of 1299fpm and 30 grooves.

  • PDF

직사각형 리튬 이온 전지의 일체형 안전장치 제조 공정에 관한 연구 (Manufacturing Integral Safety Vents in Prismatic Lithium-ion Batteries)

  • 김정훈;이경훈;임영진;김병민
    • 소성∙가공
    • /
    • 제24권4호
    • /
    • pp.293-298
    • /
    • 2015
  • A safety vent is crucial to protect its user from unpredictable explosions caused by increasing internal pressure of the lithium-ion batteries. In order to prevent the explosion of the battery, a safety vent rupture is required when the internal pressure reaches a critical value. In conventional manufacturing, the cap plate and the safety vent are fabricated separately and subsequently welded to each other. In the current study, a manufacturing process including a backward extrusion and coining process is suggested to produce an integral safety vent which also has the benefit of increasing production efficiency. FE simulations were conducted to predict the rupture pressure and to design the safety vent using a ductile fracture criterion and the element deletion method. The critical value, C, in the ductile fracture criterion was obtained from uniaxial tensile tests with an annealed sheet of 1050-H14 aluminum alloy. Rupture tests were preformed to measure the rupture pressure of the safety vent. The results met the required rupture pressure within 8.5±0.5 kgf/cm2. The simulation results were compared with experimental results, which showed that the predicted rupture pressures are in good agreement with experimentally measured ones with a maximum error of only 3.9%.

와도를 기저로 한 비압축성 점성유동해석 방법 (A Vorticity-Based Method for Incompressible Viscous Flow Analysis)

  • 서정천
    • 한국전산유체공학회지
    • /
    • 제3권1호
    • /
    • pp.11-21
    • /
    • 1998
  • A vorticity-based method for the numerical solution of the two-dimensional incompressible Navier-Stokes equations is presented. The governing equations for vorticity, velocity and pressure variables are expressed in an integro-differential form. The global coupling between the vorticity and the pressure boundary conditions is fully considered in an iterative procedure when numerical schemes are employed. The finite volume method of the second order TVD scheme is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition. The velocity field is obtained by using the Biot-Savart integral. The Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well established for potential flow analysis. The present formulation is validated by comparison with data from the literature for the two-dimensional cavity flow driven by shear in a square cavity. We take two types of the cavity now: (ⅰ) driven by non-uniform shear on top lid and body forces for which the exact solution exists, and (ⅱ) driven only by uniform shear (of the classical type).

  • PDF

EPDM/PP/Ionomer 삼원 블렌드로 된 열가소성 가황체의 파괴 인성 (Fracture Toughness of the Thermoplastic Vulcanizates from EPDM/PP/Ionomer Ternary Blends)

  • 김영규;조원제;하창식;고진환
    • Elastomers and Composites
    • /
    • 제31권5호
    • /
    • pp.341-346
    • /
    • 1996
  • The fracture mechanics investigation of the thermoplastic vulcanizates(TPV) from EPDM and PP/Ionomer ternary blends was performed in terms of the J-integral by measuring fracture energy via the locus method. The TPV from ternary blends consisting of EPDM, PP and ionomer were prepared in a laboratory integral mixer by blending and vulcanizing simultaneously. Vulcanization was performed with dicumyl peroxide (DCP) and the composition of EPDM and PP was fixed at 50/50 by weight. Two kinds of poly(ethylene-co-methacrylic acid) (EMA) lonomers were used. The J-integral values at crack initiation, Jc, of the dynamically vulcanized EPDM and PP/EMA Ionomer ternary blends were affected by the cation types $(Na^+\;or\;Zn^{2+})$ and contents(5-20wt%) of the added EMA Ionomers. The ternary blend containing 20wt% zinc-neutralized EMA Ionomer and 1.0phr DCP showed the highest Jc values of the blends.

  • PDF

부하 주파수 제어를 위한 퍼지 로직 기반 확장 적분 제어 (Fuzzy Logic Based Extended Integral Control for Load Frequency Control)

  • 류헌수;이종기;김석주;김백;문영현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.210-213
    • /
    • 2001
  • This study presents an effective variable forgetting factor method based on fuzzy logic to suppress frequency droop in extended integral load frequency control. The performance of the extended integral control is greatly dependent on the decaying factor. For an optimal or near optimal performance, it is necessary that the decaying factor as well as the feedback gains should be changed very quickly in response to changes in the system dynamics. However, because of its time-varing characteristic, the optimal decaying factor is difficult to be selected analytically. By adopting fuzzy set theory, the decaying factor can be determined quickly to respond to the variation of the feedback signals. This study builds a fuzzy rule base with use of the change of frequency and its rate as inputs. The computer simulation has been conducted for the single machine system. The simulation results show that the proposed fuzzy 1o81c based controller yields more improved control performance than the conventional PI controller.

  • PDF

가정용 보일러의 급탕시설 개선방안에 관한 연구 (A Study on the Improvement of the Water System in Domestic Boiler)

  • 한규일;박종운
    • 수산해양기술연구
    • /
    • 제34권2호
    • /
    • pp.200-211
    • /
    • 1998
  • Heat transfer performance improvement by fin and groovs is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapczodially shaped integral-fins having fin density from 748 to 1654fpm(fin per meter) and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also used for comparison. R-11 condensates at saturation state of 32 $^{\circ}C$ on the outside tube surface coded by inside water flow. All of test data are taken at steady state. The heat transfer loop is used for testing singe long tubes and cooling is pumped from a storage tank through filters and folwmeters to the horizontal test section where it is heated by steam condensing on the outside of the tubes. The pressure drop across the test section is measured by menas pressure gauge and manometer. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, overall heat transfer coefficients of finned tube are enhanced up to 1.6 ~ 3.7 times that of a plain tube at a constant Reynolds number. 2. Friction factors are up to 1.6 ~ 2.1 times those of plain tubes. 3. The constant pumping power ratio for the low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio. 4. A tube having a fin density of 1299fpm and 30 grooves has the best heat transfer performance.

  • PDF

수평 원형전열관의 핀효과에 의한 응축 및 비등 열전달촉진에 관한 연구 (2)-튜브외부 응축- (A Study on the Improement of Condensation and Boiling Heat Transfer on Horizontal Tube by Fin Effect(ll)-Shellside Condensation-)

  • 한규일;조동현
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1275-1287
    • /
    • 1994
  • Heat transfer performance improvement by fin and grooves is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapezoidal shaped integral-fins having fin densities from 748 to 1654 fpm and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also tested for comparison. R-11 condenses at saturation state of $32^{\circ}C$ on the outside tube surface cooled by inside water flow. All of test data ate taken at steady state. Beatty and Katz's, Rudy's and Webb's theoretical models are used to predict the R-11 condensation coefficient of tubes having 748, 1024 and 1299 fpm. The predicted value by Betty and Katz's model is within 10% of experimental values in this study at fpm<1024 and Rudy's model predicted the experimental data at fpm>1024 within 15%. The tube having fin density of 1299 fpm and 30 grooves has the best overall heat transfer performance. This tube shows the overall heat transfer coefficient of 11500 $W/m^{2}K$,/TEX> at coolant velocity of 3.0m/s.

시간영역법에 의한 강제동요시 동유체력 해석 (Linear Time Domain Analysis of Radiation Problems)

  • 공인영;이기표
    • 대한조선학회지
    • /
    • 제24권4호
    • /
    • pp.9-18
    • /
    • 1987
  • The hydrodynamic radiation forces acting on a ship travelling in waves have been conventionally treated by strip theories or by direct three dimensional approaches, most of which have been formulated in frequency domain. If the forward speed of a ship varies with time, or if its path is not a straight line, conventional frequency domain analysis can no more be used, and for these cases time domain analysis may be used. In this paper, formulations are made in time domain with applications to some problems the results of which are known in frequency domain. And the results of both domains are compared to show the characteristics and validity of time domain solutions. The radiation forces acting on a three dimensional body within the framework of a linear theory. If the linearity of entire system is assumed, radiation forces due to arbitrary ship motions can be expressed by the convolution integral of the arbitrary motion velocity and the so called impulse response function. Numerical calculations are done for some bodies of simple shapes and Series-60[$C_B=0.7$] ship model. For all cases, integral equation techniques with transient Green's function are used, and velocity or acceleration potentials are obtained as the solution of the integral equations. In liner systems, time domain solutions are related with frequency domain solutions by Fourier transform. Therefore time domain solutions are Fourier transformed by suitable relations and the results are compared with various frequency domain solutions, which show good agreements.

  • PDF