• Title/Summary/Keyword: $Bi_2Mg_{2/3}Nb_{4/3}O_7$

Search Result 12, Processing Time 0.034 seconds

The Structural and Electrical Properties of Bismuth-based Pyrochlore Thin Films for embedded Capacitor Applications

  • Ahn, Kyeong-Chan;Park, Jong-Hyun;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.84-88
    • /
    • 2007
  • [ $Bi_{1.5}Zn_{1.0}Nb_{1.5}O_7$ ] (BZN), $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMN), and $Bi_2Cu_{2/3}Nb_{4/3}O_7$ (BCN) pyrochlore thin films were prepared on $Cu/Ti/SiO_2/Si$ substrates by pulsed laser deposition and the micro-structural and electrical properties were characterized for embedded capacitor applications. The BZN, BMN, and BCN films deposited at $25\;^{\circ}C$ and $150\;^{\circ}C$, respectively show smooth surface morphologies and dielectric constants of about $39\;{\sim}\;58$. The high dielectric loss of the films deposited at $150\;^{\circ}C$ compared with films deposited at $25\;^{\circ}C$ was attributed to the defects existing at interface between the films and copper electrode by an oxidation of copper bottom electrode. The leakage current densities and breakdown voltages in 200 nm thick-BMN and BZN films deposited at $150\;^{\circ}C$ are approximately $2.5\;{\times}\;10^{-8}\;A/cm^2$ at 3 V and above 10 V, respectively. Both BZN and BMN films are considered to be suitable materials for embedded capacitor applications.

Analysis of Low Frequency Noise Variation in Temperature Sensor With Bi2Mg2/3Nb4/3O7 (Bi2Mg2/3Nb4/3O7을 사용한 온도센서의 저주파 잡음 특성)

  • Cho, Il Hwan;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.486-490
    • /
    • 2015
  • Sensitivity characteristics of temperature sensor with $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMNO) layer were investigated with low frequency noise measurement. Temperature sensor with BMNO layer had high reliability and high sensitivity comparing with conventional MOS type temperature sensor. Annealing temperature variation effects with $600^{\circ}C$, $700^{\circ}C$ and $800^{\circ}C$ were measured and analyzed. Annealing temperature determines trap distribution and $700^{\circ}C$ annealing sample has different pattern comparing with other samples. Results of low frequency noise can offer the design guide of temperature sensor performance.

Synthesis of High-Aspect-Ratio BaTiO3 Platelets by Topochemical Conversion and Fabrication of Textured Pb(Mg1/3Nb2/3)O3-32.5PbTiO3 Ceramics

  • Zhao, Wei;E, Lei;Ya, Jing;Liu, Zhifeng;Zhou, Heping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2305-2308
    • /
    • 2012
  • Perovskite structured barium titanate particles ($BaTiO_3$) platelets were synthesized by molten salt synthesis and topochemical microcrystal conversion. As the precursors of $BaTiO_3$, plate-like $BaBi_4Ti_4O_{15}$ particles were first synthesized by the reaction of $Bi_4Ti_3O_{12}$, $BaCO_3$, and $TiO_2$ at $1080^{\circ}C$ for 3 h in $BaCl_2$-KCl molten salt. After the topochemical reactions, layer-structured $BaBi_4Ti_4O_{15}$ particles transformed to the perovskite $BaTiO_3$ platelets. $BaTiO_3$ particles with thickness of approximately $0.5{\mu}m$ and a length of $10-15{\mu}m$ retained the morphology feature of the $BaBi_4Ti_4O_{15}$ precursor. For <001> $Pb(Mg_{1/3}Nb_{2/3})O_3-32.5PbTiO_3$ (PMNT)-5 wt % PbO piezoelectric ceramics textured with 5 vol % of $BaTiO_3$ templates, the Lotgering factor reached 0.82, and $d_{33}$ was 870 pC/N.

The Properties of $Bi_2Mg_{2/3}Nb_{4/3}O_7$ Thin Films Deposited on Copper Clad Laminates For Embedded Capacitor (임베디드 커패시터의 응용을 위해 CCL 기판 위에 평가된 BMN 박막의 특성)

  • Kim, Hae-Won;Ahn, Jun-Ku;Ahn, Kyeong-Chan;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.45-45
    • /
    • 2007
  • Capacitors among the embedded passive components are most widely studied because they are the major components in terms of size and number and hard to embed compared with resistors and inductors due to the more complicated structure. To fabricate a capacitor-embedded PCB for in-line process, it is essential to adopt a low temperature process (<$200^{\circ}C$). However, high dielectric materials such as ferroelectrics show a low permittivity and a high dielectric loss when they are processed at low temperatures. To solve these contradicting problems, we studied BMN materials as a candidate for dielectric capacitors. processed at PCB-compatible temperatures. The morphologies of BMN thin films were investigated by AFM and SEM equipment. The electric properties (C-F, I-V) of Pt/BMN/Cu/polymer were evaluated using an impedance analysis (HP 4194A) and semiconductor parameter analyzer (HP4156A). $Bi_2Mg_{2/3}Nb_{4/3}O_7$(BMN) thin films deposited on copper clad laminate substrates by sputtering system as a function of Ar/$O_2$ flow rate at room temperature showed smooth surface morphologies having root mean square roughness of approximately 5.0 nm. 200-nm-thick films deposited at RT exhibit a dielectric constant of 40, a capacitance density of approximately $150\;nF/cm^2$, and breakdown voltage above 6 V. The crystallinity of the BMN thin films was studied by TEM and XRD. BMN thin film capacitors are expected to be promising candidates as embedded capacitors for printed circuit board (PCB).

  • PDF

Bending Properties of the Flexible BMNO (Bi2Mg2/3Nb4/3O7) Capacitor Using Graphene Electrode (그래핀 전극을 이용한 유연한 BMNO (Bi2Mg2/3Nb4/3O7) 캐패시터의 굽힘 특성)

  • Song, Hyun-A;Park, Byeong-Ju;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.387-391
    • /
    • 2012
  • Graphene was fabricated onto Ni/Si substrate using a rapid-thermal pulse CVD and they were transferred onto the Ti/PES flexible substrate. For top electrode applications of the BMNO dielectric films, graphene was patterned using a argon plasma. Through an AFM image and a leakage current density of the BMNO films grown onto various bottom electrodes before and after bending test, BMNO films grown onto the graphene bottom electrode showed no change of the microstructure and the leakage current density after the bend.

Dielectric properties of bismuth magnesium niobate thin films deposited by sputtering using two main phase target in the system (두 메인 상의 타겟을 사용하여 스퍼터링으로 증착한 bismuth magnesium niobate 박막의 유전특성)

  • Ahn, Jun-Ku;Kim, Hae-Won;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.264-264
    • /
    • 2007
  • $B_2Mg_{2/3}/Nb_{4/3}O_7\;(B_2MN)$ thin films and $Bi_{3/2}MgNb_{3/2}O_7\;(B_{1.5}MN)$ thin films were deposited as a function of various deposition temperatures on Pt/$TiO_2/SiO_2$/Si substrates by radio frequency magnetron sputtering system. Both of their thin films are shown to crystalline phase at $500^{\circ}C$, deposition temperature, using 100W RF power. The composition of them and structural micro properties are investigated by RBS spectrum and SEM, AFM. 200 nm-thick $B_2MN$ thin films were deposited at room temperature had capacitance density of $151nF/cm^2$ at 100kHz, dissipation factor of 0.003 and had capacitance density of $584nF/cm^2$ at 100kHz, dissipation factor of 0.0045 at $500^{\circ}C$ deposition temperature. Both of their dielectric constant deposited at room temperature and at $500^{\circ}C$ were each approximately 40 and 100.

  • PDF

Can be the dielectric constant of thin films as-grown at room temperature higher than that of its bulk material?

  • Jung, Hyun-June;Kim, Chung-Soo;Lee, Jeong-Yong;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.23-23
    • /
    • 2010
  • The $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMNO)-Bi composite films sandwiched by an $Al_2O_3$ protection layer exhibited a linear increase of a dielectric constant with increasing thickness and the 1000nm-thick BMNO-Bi composite films showed a dielectric constant (~220) higher than that of its bulk material (~210), keeping a low leakage current density of about $0.1{\mu}A/cm^2$. An enhancement of the dielectric constant in the BMNO-Bi composite films was attributed to the hybrid model combined by a space charge polarization, dipolar response, and nano-capacitors. On the other hand, 1000nm-thick BMNO-Bi composite films sandwiched by 40nm-thick BMNO layer exhibited a dielectric constant of about 450 at 100 kHz and a leakage current density of $0.1{\mu}A/cm^2$ at 6V.

  • PDF

Transparent Nano-floating Gate Memory Using Self-Assembled Bismuth Nanocrystals in $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMN) Pyrochlore Thin Films

  • Jeong, Hyeon-Jun;Song, Hyeon-A;Yang, Seung-Dong;Lee, Ga-Won;Yun, Sun-Gil
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.20.1-20.1
    • /
    • 2011
  • The nano-sized quantum structure has been an attractive candidate for investigations of the fundamental physical properties and potential applications of next-generation electronic devices. Metal nano-particles form deep quantum wells between control and tunnel oxides due to a difference in work functions. The charge storage capacity of nanoparticles has led to their use in the development of nano-floating gate memory (NFGM) devices. When compared with conventional floating gate memory devices, NFGM devices offer a number of advantages that have attracted a great deal of attention: a greater inherent scalability, better endurance, a faster write/erase speed, and more processes that are compatible with conventional silicon processes. To improve the performance of NFGM, metal nanocrystals such as Au, Ag, Ni Pt, and W have been proposed due to superior density, a strong coupling with the conduction channel, a wide range of work function selectivity, and a small energy perturbation. In the present study, bismuth metal nanocrystals were self-assembled within high-k $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMN) films grown at room temperature in Ar ambient via radio-frequency magnetron sputtering. The work function of the bismuth metal nanocrystals (4.34 eV) was important for nanocrystal-based nonvolatile memory (NVM) applications. If transparent NFGM devices can be integrated with transparent solar cells, non-volatile memory fields will open a new platform for flexible electron devices.

  • PDF

Element Dispersion and Wallrock Alteration from Samgwang Deposit (삼광광상의 모암변질과 원소분산)

  • Yoo, Bong-Chul;Lee, Gil-Jae;Lee, Jong-Kil;Ji, Eun-Kyung;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.177-193
    • /
    • 2009
  • The Samgwang deposit consists of eight massive mesothermal quartz veins that filled NE and NW-striking fractures along fault zones in Precambrian granitic gneiss of the Gyeonggi massif. The mineralogy and paragenesis of the veins allow two separate discrete mineralization episodes(stage I=quartz and calcite stage, stage II-calcite stage) to be recognized, temporally separated by a major faulting event. The ore minerals are contained within quartz and calcite associated with fracturing and healing of veins that occurred during both mineralization episodes. The hydrothermal alteration of stage I is sericitization, chloritization, carbonitization, pyritization, silicification and argillization. Sericitic zone occurs near and at quartz vein and include mainly sericite, quartz, and minor illite, carbonates and chlorite. Chloritic zone occurs far from quartz vein and is composed of mainly chlorite, quartz and minor sericite, carbonates and epidote. Fe/(Fe+Mg) ratios of sericite and chlorite range 0.45 to 0.50(0.48$\pm$0.02) and 0.74 to 0.81(0.77$\pm$0.03), and belong to muscovite-petzite series and brunsvigite, respectiveIy. Calculated $Al_{IV}$-FE/(FE+Mg) diagrams of sericite and chlorite suggest that this can be a reliable indicator of alteration temperature in Au-Ag deposits. Calculated activities of chlorite end member are $a3(Fe_5Al_2Si_3O_{10}(OH)_6$=0.0275${\sim}$0.0413, $a2(Mg_5Al_2Si_3O_{10}(OH)_6$=1.18E-10${\sim}$7.79E-7, $a1(Mg_6Si_4O_{10}(OH)_6$=4.92E-10${\sim}$9.29E-7. It suggest that chlorite from the Samgwang deposit is iron-rich chlorite formed due to decreasing temperature from high temperature(T>450$^{\circ}C$). Calculated ${\alpha}Na^+$, ${\alpha}K^+$, ${\alpha}Ca^{2+}$, ${\alpha}Mg^{2+}$ and pH values during wallrock alteration are 0.0476($400^{\circ}C$), 0.0863($350^{\circ}C$), 0.0154($400^{\circ}C$), 0.0231($350^{\circ}C$), 2.42E-11($400^{\circ}C$), 7.07E-10($350^{\circ}C$), 1.59E-12($400^{\circ}C$), 1.77E-11($350^{\circ}C$), 5.4${\sim}$6.4($400^{\circ}C$), 5.3${\sim}$5.7($350^{\circ}C$)respectively. Gain elements(enrichment elements) during wallrock alteration are $TiO_2$, $Fe_2O_3(T)$,CaO, MnO, MgO, As, Ag, Cu, Zn, Ni, Co, W, V, Br, Cs, Rb, Sc, Bi, Nb, Sb, Se, Sn and Lu. Elements(Ag, As, Zn, Sc, Sb, Rb, S, $CO_2$) represents a potential tools for exploration in mesothermal and epithermal gold-silver deposits.

Structural and Electrical Properties of Bismuth Magnesium Niobate Thin Films deposited at Various Temperatures

  • Park, Jong-Hyun;Yoon, Soon-Gil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.153-156
    • /
    • 2007
  • Structural and electrical properties of the fully crystallized-bismuth magnesium niobate ($Bi_2Mg_{2/3}Nb_{4/3}O_7$, BMN) films with 15 mol% excess bismuth deposited on Pt bottom electrode by pulsed laser deposition are characterized for various deposition temperatures. The BMN films were crystallized with a monoclinic structure from $300^{\circ}C$ and the surface roughness slightly decreases with increasing deposition temperature. The capacitance density of the films increases with increasing deposition temperature and especially, films deposited at $400^{\circ}C$ exhibit a capacitance density of approximately $620nF/cm^2$. The crystallized BMN films with approximately 170 nm thickness exhibit breakdown strength above 600 kV/cm (${\leq}10V$) irrespective of deposition temperature and a leakage current density of approximately $2{\times}10^{-8}A/cm^2$ at 590kV/cm (at 10 V).