Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.7.2305

Synthesis of High-Aspect-Ratio BaTiO3 Platelets by Topochemical Conversion and Fabrication of Textured Pb(Mg1/3Nb2/3)O3-32.5PbTiO3 Ceramics  

Zhao, Wei (Tianjin Institute of Urban Construction, Department of Materials science & Engineering)
E, Lei (Tianjin Institute of Urban Construction, Department of Materials science & Engineering)
Ya, Jing (Tianjin Institute of Urban Construction, Department of Materials science & Engineering)
Liu, Zhifeng (Tianjin Institute of Urban Construction, Department of Materials science & Engineering)
Zhou, Heping (State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University)
Publication Information
Abstract
Perovskite structured barium titanate particles ($BaTiO_3$) platelets were synthesized by molten salt synthesis and topochemical microcrystal conversion. As the precursors of $BaTiO_3$, plate-like $BaBi_4Ti_4O_{15}$ particles were first synthesized by the reaction of $Bi_4Ti_3O_{12}$, $BaCO_3$, and $TiO_2$ at $1080^{\circ}C$ for 3 h in $BaCl_2$-KCl molten salt. After the topochemical reactions, layer-structured $BaBi_4Ti_4O_{15}$ particles transformed to the perovskite $BaTiO_3$ platelets. $BaTiO_3$ particles with thickness of approximately $0.5{\mu}m$ and a length of $10-15{\mu}m$ retained the morphology feature of the $BaBi_4Ti_4O_{15}$ precursor. For <001> $Pb(Mg_{1/3}Nb_{2/3})O_3-32.5PbTiO_3$ (PMNT)-5 wt % PbO piezoelectric ceramics textured with 5 vol % of $BaTiO_3$ templates, the Lotgering factor reached 0.82, and $d_{33}$ was 870 pC/N.
Keywords
Grain growth; Topochemical microcrystal conversion; Piezoelectric properties; Perovskites;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Sanjaya Ranmohotti, K. G.; Josepha, E.; Choi, J.; Zhang, J.; Wiley, J. B. Adv. Mater. 2011, 23, 442.   DOI
2 Poterala, S. F.; Chang, Y. F.; Clark, T.; Meyer, R. J.; Messing, G. L., Jr. Chem. Mater. 2010, 22, 2061.   DOI
3 Yan, Y. K.; Liu, D.; Zhao, W.; Zhou, H. P. J. Am. Ceram. Soc. 2007, 90, 2399.   DOI
4 Mallick, S.; Bowman, K. J.; King, A. H. Appl. Phys. Lett. 2005, 86, 182902.   DOI
5 Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Nature 2004, 43, 284.
6 Liu, D.; Yan, Y. K.; Zhou, H. P. J. Am. Ceram. Soc. 2007, 90, 1323.   DOI
7 Sabolsky, E. M.; James, A. R.; Kwon, S.; Trolier-Mckinstry, S.; Messing, G. L. App. Phys. Lett. 2001, 78, 2551.   DOI
8 Thomas, R.; Stefan, D.; Carsten, S.; Ender, S.; Ralf, M. J. Am. Ceram. Soc. 2008, 91, 929.   DOI
9 Remeika, J. P. J. Am. Chem. Soc. 1954, 76, 940.   DOI
10 Poterala, S. F.; Meyer, R. J.; Messing, G. L., Jr. J. Am. Ceram. Soc. 2011, 94, 2323.   DOI