• Title/Summary/Keyword: $Ar/O_2$ ratio

Search Result 400, Processing Time 0.032 seconds

The Study on Removal of Residual Aluminum in Raw Water (상수원수 중 잔류알루미늄 제거에 관한 연구 (황토와 R-Calmont를 이용하여))

  • 이지헌;김환범;안길원;박찬오;김익산;이종현;박혜영;박송인
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.57-68
    • /
    • 1998
  • This study was surveyed to examine the removable ability of residual aluminum with the coagulants(LAS, PAC) and the auxiliary coagulants(Loess, R-calmont) on raw water. The leaching test of the auxiliary coagulant showed that the loess contained a lot of Al, Fe and Mn. On the reverse, the R-calmont was a little. Most of the loess were composed of $SiO_{2}$ 53.25%, $Al_{2}O_{3}$ 29.28%, $Fe_{2}O_{3}$ 10.73% and Si/Al ratio was 3.08. In using both LAS vs. loess and PAC vs. loess as the coagulated material, the removal of residual aluminum was the highest as 96.3%, 96.6% respectively, and that of the residual turbidity was 95.0% when PAC vs. R-calmont was dosed 0.2mg/L. Also, loess showed better than R-calmont in the removable efficiency of aluminum and turbidity. When the setting time of auxiliary coagulant was input ar the same time with coagulant, the removal aluminum was the highest as 93.3% to 96.6%.

  • PDF

Plasma Etching Characteristics of Sapphire Substrate using $BCl_3$-based Inductively Coupled Plasma ($BCl_3$ 계열 유도결합 플라즈마를 이용한 사파이어 기판의 식각 특성)

  • Kim, Dong-Pyo;Woo, Jong-Chang;Um, Doo-Seng;Yang, Xue;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.363-363
    • /
    • 2008
  • The development of dry etching process for sapphire wafer with plasma has been key issues for the opto-electric devices. The challenges are increasing control and obtaining low plasma induced-damage because an unwanted scattering of radiation is caused by the spatial disorder of pattern and variation of surface roughness. The plasma-induced damages during plasma etching process can be classified as impurity contamination of residual etch products or bonding disruption in lattice due to charged particle bombardment. Therefor, fine pattern technology with low damaged etching process and high etch rate are urgently needed. Until now, there are a lot of reports on the etching of sapphire wafer with using $Cl_2$/Ar, $BCl_3$/Ar, HBr/Ar and so on [1]. However, the etch behavior of sapphire wafer have investigated with variation of only one parameter while other parameters are fixed. In this study, we investigated the effect of pressure and other parameters on the etch rate and the selectivity. We selected $BCl_3$ as an etch ant because $BCl_3$ plasmas are widely used in etching process of oxide materials. In plasma, the $BCl_3$ molecule can be dissociated into B radical, $B^+$ ion, Cl radical and $Cl^+$ ion. However, the $BCl_3$ molecule can be dissociated into B radical or $B^+$ ion easier than Cl radical or $Cl^+$ ion. First, we evaluated the etch behaviors of sapphire wafer in $BCl_3$/additive gases (Ar, $N_2,Cl_2$) gases. The behavior of etch rate of sapphire substrate was monitored as a function of additive gas ratio to $BCl_3$ based plasma, total flow rate, r.f. power, d.c. bias under different pressures of 5 mTorr, 10 mTorr, 20 mTorr and 30 mTorr. The etch rates of sapphire wafer, $SiO_2$ and PR were measured with using alpha step surface profiler. In order to understand the changes of radicals, volume density of Cl, B radical and BCl molecule were investigated with optical emission spectroscopy (OES). The chemical states of $Al_2O_3$ thin films were studied with energy dispersive X-ray (EDX) and depth profile anlysis of auger electron spectroscopy (AES). The enhancement of sapphire substrate can be explained by the reactive ion etching mechanism with the competition of the formation of volatile $AlCl_3$, $Al_2Cl_6$ or $BOCl_3$ and the sputter effect by energetic ions.

  • PDF

Dry etching properties of PST thin films using chlorine-based inductively coupled plasma (Chlorine-based 유도결합 플라즈마를 이용한 PST 박막의 건식 식각 특성)

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Dong-Pyo;Lee, Cheol-In;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.400-403
    • /
    • 2003
  • Etching characteristics of (Pb,Sr)$TiO_3$(PST) thin films were investigated using inductively coupled chlorine based plasma system as functions of gas mixing ratio, RF power and DC bias voltage. It was found that increasing of Ar content in gas mixture lead to sufficient increasing of etch rate and selectivity of PST to Pt. The maximum etch rate of PST film is $562\;{\AA}$/min and the selectivity of PST film to Pt is 0.8 at $Cl_2/(Cl_2+Ar)$ of 20 %. It was proposed that sputter etching is dominant etching mechanism while the contribution of chemical reaction is relatively low due to low volatility of etching products.

  • PDF

Multi-component $ZnO-In_2O_3-SnO_2$ thin films deposited by RF magnetron co-sputtering

  • Lee, Byoung-Hoon;Hur, Jae-Sung;Back, Sang-Yul;Lee, Jeong-Seop;Song, Jung-Bin;Son, Chang-Sik;Choi, In-Hoon
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.68-71
    • /
    • 2006
  • Multi-component $ZnO-In_2O_3-SnO_2$ thin films have been prepared by RF magnetron co-sputtering using targets composed of $In_3Sn_4O_{12}$(99.99%) [1] and ZnO(99.99%) at room temperature. $In_3Sn_4O_{12}$ contains less In than commercial ITO, so that it lowers cost. Working pressure was held at 3 mtorr flowing Ar gas 20 sccm and sputtering time was 30 min. RF power ratio [RF1 / (RFI + RF2)] of two guns in sputtering system was varied from 0 to 1. Each RF power was varied $0{\sim}100W$ respectively. The thickness of the films was $350{\sim}650nm$. The composit ion concentrations of the each film were measured with EPMA, AES and XPS. The low resistivity of $1-2\;{\times}\;10^3$ and an average transmittance above 80% in the visible range were attained for the films over a range of ${\delta}\;(0.3\;{\leq}\;{\delta}\;{\leq}\;0.5)$. The films also showed a high chemical stability with time and a good uniformity.

  • PDF

A Study on the Ozone Reduction of Plasma Devices by Catalyst Method (촉매법을 적용한 오존 저감형 플라즈마 기기)

  • Jeon, Sin Young;Kim, Dong Jun;Kim, Jong Yeop;Gwon, Jin Gu;Jeon, Young Min;Do, Gye Ryung;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.56-62
    • /
    • 2021
  • In this study, we created a DBD plasma device and a MnO2 catalyst mesh filter for evaluating ozone reduction of devices via the catalyst method. The DBD plasma device was manufactured by applying Ag paste to soda lime glass via the screen-printing method. The MnO2 catalyst mesh filter was manufactured by mixing MnO2 powder with binder with a 10% difference in concentration from 10% to 50% and then applying it using the dip-coating method. Finally, we sintered a MnO2 catalyst mesh filter in an electric furnace. We evaluated the characteristics of ozone generation according to the Ar gas flow of DBD plasma devices, the opening ratio, and ozone reduction performance of the MnO2 catalyst filters. Ozone reduction performance was approximately 20.4% at MnO2 10 wt%, 37.8% at MnO2 30 wt% and 50% at MnO2 50 wt%.

Fabrication of YB $a_2$C $u_3$ $O_{7-x}$ film on a (100) SrTi $O_3$ single crystal substrate by single liquid source MOCVD method ((100) SrTi $O_3$ 단결정 기판위에 단일 액상 원료 MOCVD 법에 의한 YB $a_2$C $u_3$ $O_{7-x}$ 박막 제조)

  • Jun Byung-Hyuk;Choi Jun-Kyu;Kim Ho-Jin;Kim Chan-Joong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.16-20
    • /
    • 2004
  • YB $a_2$C $u_3$$O_{7-x}$ (YBCO) films were deposited on (100) SrTi $O_3$ single crystal substrates by a metal organic chemical vapor deposition (MOCVD) system of hot-wall type using single liquid source. Under the condition of the mole ratio of Y(tmhd)$_3$:Ba(tmhd)$_2$:Cu(tmhd)$_2$= 1:2.1:2.9. the deposition pressure of 10 Torr. the MO source line speed of 15 cm/min. the Ar/ $O_2$ flow rate of 800/800 sccm. YBCO films were prepared at the deposition temperatures of 780∼89$0^{\circ}C$. In case of the YBCO films with 2.2 ${\mu}{\textrm}{m}$ thickness deposited for 6 minutes at 86$0^{\circ}C$. XRD pattern showed complete c-axis growth and SEM morphology showed dense and crack-free surface. The atomic ratios of Ba/Y and Cu/Ba in the film were 1.92 and 1.56. respectively. The deposition rate of the film was as high as 0.37 ${\mu}{\textrm}{m}$/min. The critical temperature ( $T_{c.zero}$) of the film was 87K. The critical current of the film was 104 A/cm-width. and the critical current density was 0.47 MA/$\textrm{cm}^2$. For the thinner film of 1.3 ${\mu}{\textrm}{m}$ thickness. the critical current density of 0.62 MA/$\textrm{cm}^2$ was obtained.d.

Graphene Formation on Ni/SiO2/Si Substrate Using Carbon Atoms Activated by Inductively-Coupled Plasma Chemical Vapor Deposition (유도결합 플라즈마 화학기상증착법에 의해 활성화된 탄소원자를 이용한 Ni/SiO2/Si 기판에서 그래핀 성장)

  • Nang, Lam Van;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.47-52
    • /
    • 2013
  • Graphene has been synthesized on 100- and 300-nm-thick Ni/$SiO_2$/Si substrates with $CH_4$ gas (1 SCCM) diluted in mixed gases of 10% $H_2$ and 90% Ar (99 SCCM) at $900^{\circ}C$ by using inductively-coupled plasma chemical vapor deposition (ICP-CVD). The film morphology of 100-nm-thick Ni changed to islands on $SiO_2$/Si substrate after heat treatment at $900^{\circ}C$ for 2 min because of grain growth, whereas 300-nm-thick Ni still maintained a film morphology. Interestingly, suspended graphene was formed among Ni islands on 100-nm-thick Ni/$SiO_2$/Si substrate for the very short growth of 1 sec. In addition, the size of the graphene domains was much larger than that of Ni grains of 300-nm-thick Ni/$SiO_2$/Si substrate. These results suggest that graphene growth is strongly governed by the direct formation of graphene on the Ni surface due to reactive carbon radicals highly activated by ICP, rather than to well-known carbon precipitation from carbon-containing Ni. The D peak intensity of the Raman spectrum of graphene on 300-nm-thick Ni/$SiO_2$/Si was negligible, suggesting that high-quality graphene was formed. The 2D to G peak intensity ratio and the full-width at half maximum of the 2D peak were approximately 2.6 and $47cm^{-1}$, respectively. The several-layer graphene showed a low sheet resistance value of $718{\Omega}/sq$ and a high light transmittance of 87% at 550 nm.

Rapid thermal annealing effect of IZO transparent conducting oxide films grown by a box cathode sputtering (박스캐소드 스퍼터로 성장시킨 IZO 투명 전도막의 급속 열처리 효과)

  • Bae, Jung-Hyeok;Moon, Jong-Min;Jeong, Soon-Wook;Kim, Han-Ki;Yi, Min-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.473-474
    • /
    • 2006
  • We report on the rapid thermal annealing effect on the electrical, optical, and structural properties of IZO transparent conducting oxide films grown by box cathode sputtering (BCS). To investigate structural properties of rapid thermal annealed IZO films in $N_2$ atmosphere as a function of annealing temperature, syncrotron x-ray scattering experiment was carried out. It was shown that the amorphous structure of the IZO films was maintained until $400^{\circ}C$ because ZnO and $In_2O_3$ are immiscible and must undergo phase separation to allow crystallization. In addition, the IZO films grown at different Ar/$O_2$ ratio of 30/1.5 and 30/0 showed different preferred (222) and (440) orientation, respectively, with increase of rapid thermal annealing temperature. The electrical properties of the OLED with rapid thermal annealed IZO anode was degraded as rapid thermal annealing temperature of IZO increased. This indicates the amorphous IZO anode is more beneficial to make high-quality OLEDs.

  • PDF

Simulation and Sensitivity Analysis of the Air Separation Unit for SNG Production Relative to Air Boosting Ratios (SNG 생산용 공기분리공정의 공기 재 압축비에 따른 민감도 분석)

  • Kim, Mi-yeong;Joo, Yong-Jin;Seo, Dong Kyun;Shin, Jugon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.173-179
    • /
    • 2019
  • Cryogenic air separation unit produces various gases such as $N_2$, $O_2$, and Ar by liquefying air. The process also varies with diverse production conditions. The one for SNG production among them has lower efficiency compared to other air separation unit because it requires ultrapure $O_2$ with purity not lower than 99.5%. Among factors that reduce the efficiency of air separation unit, power consumption due to compress air and heat duty of double column were representatives. In this study, simulation of the air separation unit for SNG production was carry out by using ASEPN PLUS. In the results of the simulation, 18.21 kg/s of at least 99.5% pure $O_2$ was produced and 33.26 MW of power was consumed. To improve the energy efficiency of air separation unit for SNG production, the sensitivity analysis for power consumption, purities and flow rate of $N_2$, $O_2$ production in the air separation unit was performed by change of air boosting ratios. The simulated model has three types of air with different pressure levels and two air boosting ratio. The air boosting ratio means flow rate ratio of air by recompressing in the process. As increasing the first air boosting ratio, $N_2$ flow rate which has purity of 99.9 mol% over increase and $O_2$ flow rate and purity decrease. As increasing the second air boosting ratio, $N_2$ flow rate which has purity of 99.9 mol% over decreases and $O_2$ flow rate increases but the purity of $O_2$ decreases. In addition, power consumption of compressing to increase in the two cases but results of heat duty in double column were different. The heat duty in double column decreases as increasing the first air boosting ratio but increases as increasing the second air boosting ratio. According to the results of the sensitivity analysis, the optimum air boosting ratios were 0.48 and 0.50 respectively and after adjusting the air boosting ratios, power consumption decreased by approximately 7% from $0.51kWh/O_2kg$ to $0.47kWh/O_2kg$.

Growth and characterization of lead bromide: application to mercurous bromide

  • Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.50-57
    • /
    • 2004
  • Mercurous Bromide ($Hg_2Br_2$) crystals hold promise for many acousto-optic and opto-electronic applications. This material is prepared in closed ampoules by the physical vapor transport (PVT) growth method. We investigate the effects of solutal convection on the crystal growth rate in a horizontal configuration for diffusive-convection conditions and purely diffusion conditions achievable in a low gravity environment. Our results show that the growth rate is decreased by a factor of one-fourth with a ten reduction of gravitational acceleration near y = 2.0 cm. For 0.1 $g_O$ the growth rate pattern exhibits relatively flat which is intimately related to diffusion-dominated processes. The growth rate nonuniformity is regardless of aspect ratio across the interfacial positions from 0 to 1.5. Also, the effect of a factor of the ten reduction in the gravitational acceleration is same to both Ar = 5 and 2. The enlargement in the molecular weight of B from 50 to 500 by a factor 4 causes a decrease in the maximum growth rate by the same factor, indicative of the effect of solutal gradients.