Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.1.56

A Study on the Ozone Reduction of Plasma Devices by Catalyst Method  

Jeon, Sin Young (Department of Advanced Materials Engineering, Korea Polytechnic University)
Kim, Dong Jun (Department of Advanced Materials Engineering, Korea Polytechnic University)
Kim, Jong Yeop (Department of Advanced Materials Engineering, Korea Polytechnic University)
Gwon, Jin Gu (Department of Advanced Materials Engineering, Korea Polytechnic University)
Jeon, Young Min (Department of Advanced Materials Engineering, Korea Polytechnic University)
Do, Gye Ryung (Department of Advanced Materials Engineering, Korea Polytechnic University)
Lee, Seong Eui (Department of Advanced Materials Engineering, Korea Polytechnic University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.1, 2021 , pp. 56-62 More about this Journal
Abstract
In this study, we created a DBD plasma device and a MnO2 catalyst mesh filter for evaluating ozone reduction of devices via the catalyst method. The DBD plasma device was manufactured by applying Ag paste to soda lime glass via the screen-printing method. The MnO2 catalyst mesh filter was manufactured by mixing MnO2 powder with binder with a 10% difference in concentration from 10% to 50% and then applying it using the dip-coating method. Finally, we sintered a MnO2 catalyst mesh filter in an electric furnace. We evaluated the characteristics of ozone generation according to the Ar gas flow of DBD plasma devices, the opening ratio, and ozone reduction performance of the MnO2 catalyst filters. Ozone reduction performance was approximately 20.4% at MnO2 10 wt%, 37.8% at MnO2 30 wt% and 50% at MnO2 50 wt%.
Keywords
Ozone reduction; Catalyst method; Plasma discharge device;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. J. Choi, E. H. Choi, H. S. Sung, J. G. Kwon, and S. E. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 320 (2019). [DOI: https://doi.org/10.4313/JKEM.2019.32.4.320]   DOI
2 I. H. Won, S. K. Kang, J. Y. Sim, and J. K. Lee, IEEE Trans. Plasma Sci., 42, 2788 (2014). [DOI: https://doi.org/10.1109/tps.2014.2320266]   DOI
3 K. H. Song, Y. S. Ko, and W. C. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 9, 1427 (2014). [DOI: https://doi.org/10.13067/jkiecs.2014.9.12.1427]   DOI
4 H. H. Son, Appl. Chem. Eng., 22, 261 (2011).
5 W. Y. Lee, D. J. Jin, Y. J. Kim, G. H. Han, H. K. Yu, H. C. Kim, S. W. Jin, J. H. Koo, D. Y. Kim, and G. Cho, J. Korean Vac. Soc., 22, 111 (2013). [DOI: https://doi.org/10.5757/JKVS.2013.22.3.111]   DOI
6 B. K. Koo, Y. C. Kim, M. G. Jang, J. H. Kim, J. Y. Park, and S. B. Han, J. Korean Inst. Illum. Electr. Install. Eng., 25, 116 (2011). [DOI: https://doi.org/10.5207/JIEIE.2011.25.10.116]   DOI
7 J. M. Tatibouët, S. Valange, and H. Touati, Appl. Catal., A, 569, 126 (2019). [DOI: https://doi.org/10.1016/j.apcata.2018.10.026]   DOI
8 I. Jang and Y. Shin, The Korean Society of Mechanical Engineers (2013) p. 403.
9 S. B. Han, J. Y. Park, and S. H. Park, J. Korean Inst. Illum. Electr. Install. Eng., 22, 142 (2008). [DOI: https://doi.org/10.5207/JIEIE.2008.22.12.142]   DOI
10 S. B. Han, Trans. Korean Inst. Elect. Eng., 59, 932 (2010). [DOI: https://doi.org/10.5370/KIEE.2010.59.5.932]   DOI
11 M. Yamaguma and J. W. Choi, J. Korean Soc. Saf., 15, 92 (2000).
12 M. Seo, M. Lee, S. Lee, S. Cho, and S. Uhm, Appl. Chem. Eng., 28, 193 (2017). [DOI: https://doi.org/10.14478/ace.2016.1130]   DOI
13 J. H. Byeon, J. H. Hwang, J. H. Ji, and S. H. Kang, Trans. Korean Soc. Mech. Eng., B27, 524 (2003). [DOI: https://doi.org/10.3795/KSME-B.2003.27.4.524]   DOI