• Title/Summary/Keyword: $Al_2TiO_5$

Search Result 518, Processing Time 0.03 seconds

A Study on the Preparation of $Al_2O_3-TiO_2$ Nanocomposite Powders ($Al_2O_3-TiO_2$계 Nanocomposite 분체의 합성에 관한 연구)

  • 이홍림;이호순
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.2
    • /
    • pp.115-122
    • /
    • 1993
  • Transparent Al2O3 and TiO2 clear sols prepared by hydrolysis and subsequent peptization were mixed into wet gel. EDS analysis for this gel showed that wet gel was extremely homogeneous in chemical composition. Calcination of the wet gel at 120$0^{\circ}C$ for 50 minutes resulted in Al2O3-TiO2 nanocomposite powders where TiO2 particles of 101~102 nanometer were dispersed in the Al2O3 matrix. Both powders were sintered for 4 hours in the temperature range over 1500~1$650^{\circ}C$ with and without 5wt% MgO sintering aid. Among these sintered bodies, nanocomposite powder compacts sintered at 1$650^{\circ}C$ for 4 hours with 5wt% MgO showed the most dense structure with the grain size under 5${\mu}{\textrm}{m}$ and highest relative density of 98.2%.

  • PDF

Thermo-Mechanical Properties of Al2TiO5 Ceramics Stabilized with MgO and ZrO2 Additives (MgO와 ZrO2가 첨가된 Al2TiO5 세라믹의 열·기계적 물성)

  • Kim, Da-Mi;Kim, Hyung-Tae;Kim, Hyeong-Jun;Kim, Ik-Jin;Choi, Seong-Cheol;Kim, Yong-Chan;NamKung, Jung;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.253-258
    • /
    • 2012
  • The characteristics of $Al_2TiO_5$ ceramics were influenced by the additives and the heat treatment that controls the microcrack behavior at grain boundaries. The effect of additives on $Al_2TiO_5$ ceramics were investigated in terms of mechanical properties and thermal expansion at high temperature. The $Al_2TiO_5$ were synthesized at $1500^{\circ}C$, $1550^{\circ}C$ and $1600^{\circ}C$ for 2h by reaction sintering. The formation of $Al_2TiO_5$ phase was increased by additives that enhanced the volume of the microcrack that can lead to low thermal expansion. The mechanical properties of the stabilized $Al_2TiO_5$ ceramics were increased remarkably at $1100^{\circ}C$, $1200^{\circ}C$ and $1300^{\circ}C$ due to the oneset of mechanical healing of grain-bondary microcracks at a high temperature. The amount of microcrack was decreased at lower sintering temperature that causes the increase of mechanical properties at high temperature.

Preparation and Characteristics of Ceramic Composite Powders Coated with $Al_2O_3$ : (II) Composite Powders of $Al_2O_3$-$TiO_2$ ($Al_2O_3$ 로 피복시킨 세라믹 복합분체의 제조 및 특성 : (II) $Al_2O_3$-$TiO_2$ 복합분체)

  • 현상훈;정형구
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.4
    • /
    • pp.338-346
    • /
    • 1991
  • The alumina-titania composite powders coated with Al2O3 were prepared by the method of hydrolysis-deposition of mixed aluminium salt solution of Al2(SO)4-Al(NO3)3-Urea. The effects of coating-process parameters on the characteristics of coated composite powders were also investigated. As the content of TiO2 dispersed in deionized water increased, the coated composite powders were found to be more uniform in size and unagglomerated. When TiO2 powders were coated for 30 min, the optimum TiO2 content in the coating process was 400 mg/ι. The size of TiO2 particle was increased approximately from 0.7${\mu}{\textrm}{m}$ to 1.0${\mu}{\textrm}{m}$ through coating of Al2O3. The IEP of coated composite powders was pH=8.3 identical to the value of aluminium hydroxides and the zeta-potential showed nearly similar values each other. When heat treating coated composite powders at 130$0^{\circ}C$, only two phases of TiO2(rutile) and Al2TiO5 were observed. These results showed that the suface of TiO2 could be uniformly coated with the aluminium hydroxide.

  • PDF

Surface Reaction Products of CP- Ti and Ti-25wt%Pd Castings Used for Dental Application (치과용 티타늄 및 Ti-25wt%Pd 주조체의 표면반응생성물)

  • 정준영;문수;이진형
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.383-389
    • /
    • 2004
  • A commercially pure Ti(CP-Ti) and Ti-25wt%Pd alloy for dental applications were cast into a phosphate-bonded Al$_2$ $O_3$/ $SiO_2$ investment mold and the surface of the casting specimens were investigated by means of SEM/EDS, XRD and XPS. The addition of 25wt%Pd in CP-Ti showed a moderate mold reaction owing to the considerable lowering of melting point. XRD analysis of the investment after burn-out treatment revealed that it consisted essentially of $SiO_2$, Al$_2$ $O_3$, P$_2$O$\_$5/, Mg$_3$(P $O_4$)$_2$, AlP $O_4$, Mg$_2$ $SiO_4$, MgAl$_2$ $O_4$ The mold reaction products were Ti$\_$5/Si$_3$ and Ti $O_2$ in case of CP-Ti casting and Ti $O_2$ and SiO$\_$x/ in case of Ti-25wt% Pd casting.

Effect of V on High Temperature Oxidation of TiAl Alloy (TiAl합금의 고온산화에 미치는 V효과)

  • ;Morihiko Nakamura
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.329-333
    • /
    • 2003
  • The high-temperature oxidation behavior of Ti39Al-10V alloy that consisted primarily of $\beta$-Ti, ${\gamma}$-TiAl, and $\alpha_2$ $-Ti_3$Al phases was studied. The relatively thick and porous oxide scales formed consisted primarily of an outermost, thin TiO$_2$ layer, and an outer, thin $Al_2$$O_3$-rich layer, and an inner, very thick (TiO$_2$, $Al_2$$O_3$) mixed layer. Vanadium was present uniformly throughout the oxide scale. The formation and subsequent evaporation of V-oxides such as VO, $VO_2$, and $V_2$O$_{5}$ deteriorated oxidation resistance and scale adherence of the TiAl alloy significantly.y.

Thermal Shock Resistance of $Al_2$TiO$_5$ Ceramics Prepared from Electrofused Powders (전기용융 분말로부터 합성된 $Al_2$TiO$_5$ Ceramics의 열충격 저항성)

  • ;Constantin Zografou
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1061-1069
    • /
    • 1998
  • The thermal instability of Al2TiO5 Ceramics was contrlled by solid solution with MgO SiO2 and ZrO2 through electrofusion in an arc furnace. The thermal expansion properties of Al2TiO5 composites show the hysteresis due to the strong anisotropy of The crystal axes of these material. These phenomena are ex-plained by the opening and closing of microcracks. The difference in microcracking temperatures e.g 587.6(ATG2), 405.9(ATG3) and 519.7$^{\circ}C$(ATG4) is caused by the difference in grain size and stabilizer type. The thermal shock behaviour under cyclic conditions between 750-1400-75$0^{\circ}C$ show no change in mi-crostructure and phase assemblage for all three stabilized specimens. After the thermal loading test at 110$0^{\circ}C$ for 100hrs. ATG1 and ATG2 materials decomposes completely to its components corundum and ru-tile in both cases. However with approximatelly 20% retention of the Al2TiO5 Thus in order to prevent decomposition of the stabilized material in the critical temperature range 800-130$0^{\circ}C$ it must be traversed within a short period of time.

  • PDF

Synthesis of Tialite Ceramic Pigments and Coloring in Glazes (Tialite계 세라믹 안료의 합성 및 유약에서의 발색)

  • Kim, Yeon-Ju;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.450-455
    • /
    • 2011
  • [ $Al_2TiO_5$ ]has a high refractive index and good solubility of the chromophore in the $Al_2TiO_5$ lattice, which allows this structure to be a good candidate for the development of new ceramic pigments. However, pure $Al_2TiO_5$ is well known to decompose on firing at $900{\sim}1100^{\circ}C$. However, this process can be inhibited by the incorporation of certain metal cations into its crystalline lattice. In this study, the synthesis of gray ceramic pigment was performed by doping cobalt on the $Al_2TiO_5$ crystal structure. The $Al_2TiO_5$ was synthesized using $Al_2O_3$ and $TiO_2$, and doped with $Co_3O_4$ as a chromophore material. In order to prevent the thermal decomposition during the cooling procedure, MgO was added to samples by 0.05 mole, 0.1 mole, and 0.15 mole as a stabilizer. The samples were fired at $1500^{\circ}C$ for 2 hours and cooled naturally. The crystal structure, solubility limit, and color of the synthesized pigment were analyzed using XRD, Raman spectroscopy, UV, and UV-vis. $Al_2O_3$ was available for the formation of $CoAl_2O_4$, which should also be considered in order to explain the small amount of this phase detected in the sample with the higher $Co^{2+}$ content (${\geq}$ 0.03 mole). It was found that the solubility limit of $Co^{2+}$ in the $Al_2TiO_5$ crystal was 0.02 mole% through an analysis of Raman spectroscopy. Through the addition of a pigment with 0.02 mole% of $Co^{2+}$ to lime-barium glaze, stabilized gray color pigments with 66.54, -2.35, and 4.68 as CIE-$L^*a^*b^*$ were synthesized.

The Characteristics of Ti-O Buffer Layered Ta/Ta2O5Capacitors on the Al2O3 substrate (Al2O3 기판위에 형성된 Ti-O 완충층을 가진 Ta/Ta2O5커패시티의 특성)

  • 김현주;송재성;김인성;김상수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.807-811
    • /
    • 2003
  • We investigated the electrical characterisitics of T $a_2$ $O_{5}$ (tantalum pentoxide) film and Ti-O/T $a_2$ $O_{5}$ film deposited on $Al_2$ $O_3$based substrate. Ta (tantalum) electrode and $Al_2$ $O_3$ substrate was used for the purpose of simplifying the manufacturing process in IPD's (integrated passive devices). Dielectric materials (T $a_2$ $O_{5}$ and Ti-O/T $a_2$ $O_{5}$ films) deposited on Ta/Ti/A $l_2$ $O_3$ were annealed at 700 $^{\circ}C$ for 60 sec. in vacuum. The XRD results showed that as-deposited T $a_2$ $O_{5}$ film possessed amorphous structure, which was transformed to crystallines by rapid thermal heat treatment. We compared the lnJ- $E^{{\frac}{1}{2}}$, C-V, C-F of both as-deposited and annealed dielectric thin films deposited on Ta bottom electrode. From this results, we concluded that the leakage current could be reduced by introducing Ti-O buffer layer and conduction mechanisms of T $a_2$ $O_{5}$ and Ti-O/T $a_2$ $O_{5}$ could be interpreted appropriately by Schottky emission effect.

Effect of Additives and Cooling Rates on the Electrical Resistivity of $BaTiO_3$ Ceramics: (II) Multi-Component Systems of $TiO_2$, $SiO_2$ and $Al_2O_3$ Additives ($BaTiO_3$ 세라믹스의 전기저항에 미치는 첨가제와 냉각속도의 영향: (II) $TiO_2$, $SiO_2$$Al_2O_3$ 복합첨가)

  • 염희남;하명수;이재춘;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.10
    • /
    • pp.803-809
    • /
    • 1991
  • Microstructure, room temperature resistivity and temperature coefficient of resistance of BaTiO3 ceramics were characterized and measured in this study. The basic composition of the BaTiO3 cremics was formed by adding 0.25 mol% Dy2O3 and 0.07 mol% MnO2 to the BaTiO3 composition. Samples of the BaTiO3 ceramics were prepared by adding various amounts of the TiO2, SiO2 and Al2O3 to the basic composition. An addition of 1 mol% TiO2, 2 mol% SiO2 and 0.5 mol% Al2O3 to the basic composition resulted both the values of the room temperature resistivity and the temperatured coefficient being maxium. Meanwhile, an addition of 1 mol% TiO2 and 1 mol% Al2O3 to the basic composition resulted the value of the room temperature resistivity maxium and the temperature coefficient minimum. The temperature coefficient showed a maximum value as well as a minimum value when the three kinds of the additives were added together to the basic composition of the BaTiO3 ceramics. Maxed phases of BaTi3O7, BaTiSiO5 and BaAl2Si2O8 were present at the grain boundary.

  • PDF

Mechanical Properties and Fabrication of Nanostructured Al2TiO5 Compound by Pulsed Current Activated Sintering (펄스전류 활성 소결에 의한 나노구조 Al2TiO5 화합물 제조 및 기계적 특성)

  • Kang, Hyun-Su;Park, Hyun-Kuk;Doh, Jung-Mann;Yoon, Jin-Kook;Park, Bang-Ju;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.817-822
    • /
    • 2012
  • Nano powders of $Al_2O_3$ and $TiO_2$ compounds made by high energy ball milling were pulsed current activated sintered for studying their sintering behaviors and mechanical properties. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition of grain growth. Nano-structured $Al_2TiO_5$ with small amount of $Al_2O_3$ and$TiO_2$ was formed by sintering at $1300^{\circ}C$ for 5 minute, in which average grain size was about 96 nm. Hardness and fracture toughness of the nano-structured $Al_2TiO_5$ compound with a small amount of $Al_2O_3$ and$TiO_2$ were $602kg/mm^2$ and $2.6MPa{\cdot}m^{1/2}$, respectively.