• 제목/요약/키워드: $Al_2SiO_5$

Search Result 1,200, Processing Time 0.031 seconds

Influences of the Molar Ratio of $Mo/MoO_3$ on Characteristics of $MoSi_2-Al_2O_3$ composites by SHS Methods (연소합성법에 의한 $MoSi_2-Al_2O_3$ 복합재료의 특성에 미치는 $Mo/MoO_3$ 몰비의 영향)

  • 장윤식;이윤복;김용백;김인술;박흥채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1209-1216
    • /
    • 1996
  • MoSi2-Al2O3 composites were prepared by thermal explosion mode of self-propagating high temperature syn-thesis (SHS) using element powders of MoO3 Mo Si and Al. The combustion products of MoSi2 which have 10, 20, 30 and 40 wt% Al2O3 showed the molten state in the range of Mo to MoO3 6:1-9.5:1, 2:1-8:1, 1:1-5:1, and 1:1-3:1 (molar ratio) respectively. The combustion products which made least seperation the molten phase from the slag phase were in Mo/MoO3=9, 5:1, 8:1, 5:1 and 3:1 (molar ratio) respectively. Particles size of MoSi2 and Al2O3 in the combustion product were decreased as the molar ratio of Mo to MoO3 increase. By XRD analysis only MoSi2 and $\alpha$-Al2O3 peaks were identified in the combusion products, In case of MoSi2 containing 20wt% Al2O3 5.1wt% Al existed into MoSi2 grains and 30.7wt% Si and 7.7wt% Mo existed into Al2O3 grains. The relative density of MoSi2 containing 10, 20, 30 and 40 wt% Al2O3 were 82.7, 85.2, and 81.9% respectively. The fracture strength of MoSi2-Al2O3 composites increased with increasing Al2O3 and that of MoSi2-20wt% Al2O3 composite was 195 MPa.

  • PDF

The effect of the addition of TiO2 in the preparation of (Al2O3-SiC)- SiC composite powder by SHS Process (SHS법을 이용한 복합분말(Al2O3-SiC) 제조시 TiO2첨가의 영향)

  • Yun, Gi-Seok;Yang, Beom-Seok;Lee, Jong-Hyeon;Won, Chang-Hwan
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.48-53
    • /
    • 2002
  • $Al_2O_3-SiC$ and $Al_2O_3-SiC$-TiC composite powders were prepared by SHS process using $SiO_2,\;TiO_2$, Al and C as raw materials. Aluminum powder was used as reducing agent of $SiO_2,\;TiO_2$ and activated charcoal was used as carbon source. In the preparations of $Al_2O_3-SiC$, the effect of the molar ratio in raw materials, compaction pressure, preheating temperature and atmosphere were investigated. The most important variable affecting the synthesis of $Al_2O_3-SiC$ was the molar ratio of carbon. Unreactants remained in the product among all conditions without compaction. The optimum condition in this reaction was $SiO_2$: Al: C=3: 5: 5.5, 80MPa compaction pressure under Preheating of $400^{\circ}C$ with Ar atmosphere. However there remains cabon in the optimum condition. The effect of $TiO_2$ as additive was investigated in the preparations of $Al_2O_3-SiC$. As a result of $TiO_2$ addition, $Al_2O_3-SiC$-TiC composite powder was prepared. The $Al_2O_3$ powder showed an angular type with 8 to $15{\mu}m$, and the particle size of SiC powder were 5~$10{\mu}m$ and TiC powder were 2 to $5{\mu}m$.

Fabrication of $Al_2O_3/SiC$ Composite Through Oxidation of SiC (SiC의 산화에 의한 $Al_2O_3/SiC$ 복합체의 제조)

  • 김경환;이홍림;이형민;홍기곤
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.535-543
    • /
    • 1997
  • The surface of SiC particles were partially oxidized to produce SiO2 layers on the SiC particles to prepare Al2O3/SiC composite by formation of mullite bonds between the grains of Al2O3 and SiC during sintering at 1$600^{\circ}C$. This process is considered to enable the sintering of Al2O3/SiC composite at lower temperature and also to relieve the stress, produced by thermal expansion mismatch between Al2O3 and SiC. In fact, Al2O3/SiC composite prepared by oxidation of SiC was observed to be more effectively sintered and densified at lower temperature. Maximum density, flexural strength and microhardness were obtained with 5.65 vol% of mullite content in Al2O3/SiC composite.

  • PDF

Effect of $SiO_2$ and $Al_2O_3$ on Characteristics of Yttria-Stabilized Zirconia Ceramics (아트리아 안정화 지르토니아 소결체의 특성에 $SiO_2$$Al_2O_3$ 가 미치는 영향)

  • 손정덕;최시영;조상희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.6
    • /
    • pp.886-894
    • /
    • 1990
  • Sinterbility, microstructure, mechenical and electrical properties of yttriastabilized zirkconiz (92 mole % ZrO2 + 8 mole % Y2O3) doped with 0.5 mole % SiO2 and 0-2.O mole% Al2O3 were studied as a functin of Al2O3 addition. Sintered density increased with increasing Al2O3 addition up to o.5 mole%but decreased up to 1.0mole% Al2O3. Vickers hardness is proportional to sintered density. The specimen added 0.5mole% Al2O3 and 0.5mole% SiO2 exhibited a maximum conductivity. And the specimen added 0.5 mole % Al2O3 and 0.5 mole% SiO2 was measured a maximum electromotive force for a characteristics of oxyzen partial pressure.

  • PDF

Study on the Properties of $B_2O_3$-$SiO_2$and $Al_2O_3$-$SiO_2$Coating Films by the Sol-Gel Method (Sol-Gel법으로 제조한 $B_2O_3$-$SiO_2$$Al_2O_3$-$SiO_2$ 박막의 특성에 관한 연구)

  • 황규석;김병훈;최석진
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.583-588
    • /
    • 1990
  • Glass films in the binary system B2O3-SiO2 and Al2O3-SiO2 were prepared on soda-lime-silica slide glass by the dip-coating technique from TEOS and boric acid or aluminum nitrate. Thickness of the films varying with viscosity and withdrawal speed were measured and effect of composition and firing temperature on the properties such as transmittance and refractive index were investigated. nM2O3.(100-n)SiO2(M=B or Al) films containing up to 20mol% B2O3 and 40mol% Al2O3 were transparent. Maximum transmittance at visible range were obtained for the sample containing 15mol% Ba2O3 and 32.5mol% Al2O3 and heat-treated at 50$0^{\circ}C$, respectively. Refractive index of the film containing 15mol% B2O3 was mininum in the B2O3-SiO2 binary system and minimal refractive index was appeared at the film containing 32.5mol% Al2O3. In IP spectra, addition of B2O3 were increased absorption peak intensity of B-O and Si-O-B bond and addition of Al2O3 were decreased absorption peak intensity of Si-O bond, respectively.

  • PDF

Fabrication and Properties of Reaction Squeeze Cast ($Al_2O_3{\cdot}SiO_2+Ni$)/Al Hybrid Metal Matrix Composites (반응 용탕단조한($Al_2O_3{\cdot}SiO_2+Ni$)/Al 하이브리드 금속복합재료의 제조 및 특성)

  • Kim, Sang-Suk;Park, Ik-Min;Kim, Sung-Joon;Choi, Il-Dong
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.338-346
    • /
    • 1997
  • Mechanical properties of ($10%Al_2O_3{\cdot}SiO_2+5%Ni$)/Al hybrid composites fabricated by the reaction squeeze casting were compared with those of ($15%Al_2O_3{\cdot}SiO_2$)/Ai composites. Al-Ni intermetallic compounds ($10{\sim}20 {\mu}m$) formed by the reaction between nickel powder and molten aluminum were uniformly distributed in the Al matrix. These intermetallic compounds were identified as $Al_3Ni$ using X-ray diffraction analysis and they resulted in beneficial effects on room and high temperature strength and wear resistance. Microhardness values of ($10%Al_2O_3{\cdot}SiO_2+5%Ni$)/Al hybrid composite were greater by about 100Hv than those of ($15%Al_2O_3{\cdot}SiO_2$)/Al composite. Wear resistance of ($10%Al_2O_3{\cdot}SiO_2+5%Ni$)/Al hybrid composites was superior to that of ($15%Al_2O_3{\cdot}SiO_2$)/Al composites regardless of the applied load. While tensile and yield strength of ($10%Al_2O_3{\cdot}SiO_2+5%Ni$)/Al hybrid composites were greater at room temperature and $300^{\circ}C$, strength drop at high temperature was much smaller in hybrid composites.

  • PDF

Catalytic Combustion of Methane over Pd-ZSM-5 Catalysts (Pd-ZSM-5 촉매 상에서 메탄의 연소)

  • Eom, Gi Tai;Park, Jin Woo;Ha, Jai-Mok;Hahm, Hyun Sik
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.878-883
    • /
    • 1998
  • The methane combustion reaction was conducted over Pb-ZSM-5 catalysts. ZSM-5 synthesized at low temperature and atomospheric pressure was used as a support. The change of methane conversion with $SiO_2/Al_2O_3$ molar ratio was tested. The methane conversions of the synthesized Pb-ZSM-5 catalyst was compared with those of a commercial Pd-ZSM-5(PQ Co.) and $PdO/{\gamma}-Al_2O_3$. The methane conversion increased with the decrease in $SiO_2/Al_2O_3$ molar ratio. The combustion rate of methane also increased with the decrease in $SiO_2/Al_2O_3$ molar ratio. The synthesized Pb-ZSM-5 showed better methane conversion than that of the commercial one. It is found that a crucial factor in methane combustion reaction is oxygen adsorption strength on the catalysts.

  • PDF

Analysis of the Na Gettering in PSG/SiO2/Al-1%Si Multilevel Thin Films using XPS and SIMS (XPS와 SIMS를 이용한 PSG/SiO2/Al-1%Si 적층 박막내의 Na 게터링 분석)

  • Kim, Jin Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.467-471
    • /
    • 2016
  • In order to investigate the Na gettering, PSG/$SiO_2$/Al-1%Si multilevel thin films were fabricated. DC magnetron sputter techniques and APCVD (atmosphere pressure chemical vapor deposition) were utilized for the deposition of Al-1%Si thin films and PSG/$SiO_2$ passivations, respectively. Heat treatment was carried out at $300^{\circ}C$ for 5 h in air. SIMS (secondary ion mass spectrometry) depth profiling and XPS (X-ray Photoelectron Spectroscopy) analysis were used to determine the distribution and binding energies of Na, Al, Si, O, P and other elements throughout the PSG/$SiO_2$/Al-1%Si multilevel thin films. Na peaks were mainly observed at the the PSG/$SiO_2$ interface and at the $SiO_2$/Al-1%Si interfaces. Na impurity gettering in PSG/$SiO_2$/Al-1%Si multilevel thin films is considered to be caused by a segregation type of gettering. The chemical state of Si and O elements in PSG passivation appears to be $SiO_2$.

Excited-state Intramolecular Proton Transfer of 1,5- and 1,8-Dihydroxyanthraquinones Chemically Adsorpted onto SiO2, SiO2-Al2O3, and Al2O3 Matrices

  • Cho, Dae-Won;Song, Ki-Dong;Park, Seong-Kyu;Jeon, Ki-Seok;Yoon, Min-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.647-651
    • /
    • 2007
  • In order to investigate the excited-state intramolecular proton transfer (ESIPT) process of dihydroxyanthraquinones (DHAQ; 1,5-DHAQ and 1,8-DHAQ) in organic-inorganic hybrid matrices, transparent SiO2, SiO2- Al2O3, and Al2O3 matrices chemically bonded with DHAQ were prepared using a sol-gel technique. The absorption maxima of 1,5- and 1,8-DHAQ in SiO2 matrices are observed at around 420 nm, whereas those of DHAQ in both SiO2-Al2O3 and Al2O3 matrices are markedly shifted to longer wavelength compared with those in SiO2 matrix. This indicates that DAHQ forms a chemical bond with an Al atom of Al2O3. The DHAQ in SiO2 matrix shows a markedly Stokes-shifted emission which is originated from the ESIPT in DHAQ. Based on the emission lifetimes of DHAQ, the ESIPT of DHAQ was found to be strongly affected by the chemical interaction with Al atom in the Al2O3-related matrices.

Analysis of the Na Gettering in SiO2/PSG/SiO2/Al-1%Si and SiO2/TEOS/SiO2/Al-1%Si Multilevel Thin Films using SIMS (SIMS를 이용한 SiO2/PSG/SiO2/Al-1%Si 및 SiO2/TEOS/SiO2/Al-1%Si 적층 박막내의 Na 게터링 분석)

  • Kim, Jin Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.110-115
    • /
    • 2018
  • The Na low temperature gettering in $SiO_2/PSG/SiO_2/Al-1%Si$ and $SiO_2/TEOS/SiO_2/Al-1%Si$ multilevel thin films was investigated using dynamic SIMS(secondary ion mass spectrometry) analysis. DC magnetron sputter, APCVD and PECVD techniques were utilized for the deposition of Al-1%Si thin films, $SiO_2/PSG/SiO_2$ and $SiO_2/TEOS/SiO_2$ passivations, respectively. Heat treatment was carried out at $300^{\circ}C$ for 5 h in air. SIMS depth profiling was used to determine the distribution of Na, Al, Si and other elements throughout the $SiO_2/PSG/SiO_2/Al-1%Si$ and $SiO_2/TEOS/SiO_2/Al-1%Si$ multilevel thin films. XPS was used to analyze chemical states of Si and O elements in $SiO_2$ passivation layers. Na peaks were observed throughout the $PSG/SiO_2$ and $TEOS/SiO_2$ passivation layers on the Al-1%Si thin films and especially at the interfaces. Na low temperature gettering in $SiO_2/PSG/SiO_2/Al-1%Si$ and $SiO_2/TEOS/SiO_2/Al-1%Si$ multilevel thin films is considered to be caused by a segregation type of gettering.