• Title/Summary/Keyword: $Al_2O_3

Search Result 6,308, Processing Time 0.042 seconds

High-Pressure Synthesis and Chemistry of Amphibole Solid Solutions along the Joint Tremolite-Tschermakite (투각섬석-처마카이트 각섬석 고용체의 고압합성 및 화학적 성질)

  • 조문섭
    • Journal of the Mineralogical Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 1990
  • Clacic amphiboles along the tremolite (Tr)-tschermakite(Ts) joint were synthesized using a piston-cylinder appratus. At 750-85$0^{\circ}C$and 12-2 kb, amphibole+corundum coexist with zoisite($\pm$talc, chlorite, and Mg-staurolite), but with anorthite($\pm$cholorite, spinel, pyroxenes, and sapphirine) at lower P. At 90$0^{\circ}C$, amphibole+corundum+clinopyroxene($\pm$anorthite, forsterite, sapphirine, and garnet) are stable over the P range 12-18 kb. These amphibole-bearing assemblages are replaced at high P by clcinopyroxene+talc+chlorite+zoisite at 650-75$0^{\circ}C$, and at higher temperatures by garnet+clinopyroxene($\pm$zoisite, orthopyroxene, and Mg-staurolite). Synthetic amphiboles with Ts>~45 mol% contain as much as 0.15 excess cations per formula unit(pfu) based on 23 oxygens(anhydrous formula), whereas less tschermakitic ones are deficient in cation occupancy by up to 0.18 pfu. This trend is attributed to the 야/trioctahedral substitution in Ca-amphiboles. Compositions of synthetic amphiboles display systematic changes with P and T governed by coexisting mineral assemblages. The Ts content (=[8-Si-Na]/2) increases with increasing T( Ts/ T=~0.1 nik% K-1) in the range 750-85$0^{\circ}C$, but remains nearly constant at 850-90$0^{\circ}C$. Pressure dramatically affects the Ts content of Ca-amphiboles:it increases with P at 8-12 kb( Ts/ T=2-3 mol% K-1), but significantly decreases at 12-21 kb( Ts/ P=-2.5 mol% Kb-1). Hence, the most tschermakitic amphiboles, containing 60$\pm$5 mol % Ts, or 1.2$\pm$0.1 tetrahedral Al, occur at 12 kb and 850-90$0^{\circ}C$. Compositions of Ca-amphiboles defined by a simple reaction, 3 Tr+2 zoisite+7 corundum+H2O=5 Ts, are reversed and used to estimate thermodynamic parameters of tschermakite assuming ideal mixing of Tr-Ts solid solutions. Predicted standard molal entropy and enthalpy of tschermakite are : S$^{\circ}$of Tr-Ts solid solutions. Predicted standard molal entropy and enthalpy of tschermakite are : S$^{\circ}$=566.9$\pm$13.7 J mol-1K, -1and H$^{\circ}$=-12518.36$\pm$15.17 kJ mol.-1

  • PDF

The Effect of Deodeok Contents on the Quality of Deodeok Wine (더덕 함량이 더덕 침출주의 품질에 미치는 영향)

  • Kwon, Dong-Jin;Choi, Shin-Yang
    • Food Science and Preservation
    • /
    • v.14 no.4
    • /
    • pp.414-418
    • /
    • 2007
  • The physicochemical characteristics and sensory properties of Deodeok wine, formed by leaching of Deodeok at room temperature for 180 days, were investigated over the following range of Deodeok levels: 10, 15 and 20% (all w/v). The higher the level of Deodeok, the greater were the final values of total sugars, reducing sugars, total polyphenols, and crude saponins. The Hunter's b-value (yellowness) of Deodeok wine varied markedly with Deodeok levels, and yellowness was highest in Deodeok wine containing 20% (w/v) Deodeok. Non-volatile compounds, that form the basis of the liquor tax law, were 0.64, 1.38 and 2.11% (all w/v), respectively, at day 160. Of these values, that of 2.11% (w/v), the level of non-volatile compounds in Deodeok wine containing 20% (w/v) Deodeok, was in accord with the liquor tax law (that requires this figure to be 2.0%). Sensory evaluation showed that Deodeok wine containing 20% (w/v) Deodeok was superior to the other wines tested.

Properties of shrinkage reducing agent and mortar used Anhydrite and C12A7-based slag (무수석고와 C12A7계 슬래그를 사용한 수축저감제 및 모르타르 특성)

  • Park, Soo-Hyun;Chu, Yong-Sik;Seo, Sung-Kwan;Park, Jae-Wan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.101-106
    • /
    • 2013
  • In this study, shrinkage reducing agent was fabricated with $12CaO{\cdot}7Al_2O_3(C_{12}A_7)$ of CA-based slag and anhydrite. Mortars added shrinkage reducing agent were experimented for enhancement of shrinkage reduction and compressive strength. The properties of setting time, length change and compressive strength of mortar changed with mixing ratios. From 0% to 6% $C_{12}A_7$-based slag, setting times got shorter and length changes of mortars were similar to 7days. From 1day to 7days, the more mortar had $C_{12}A_7$-based slag, the higher compressive strength. At 28days, compressive strength of mortars with 6% $C_{12}A_7$-based slag was about 36MPa. After 35days, mortar with 6% $C_{12}A_7$-based slag had the lowest ratio of shrinkage reduction. So mortar with 6% $C_{12}A_7$-based slag had the excellent characteristics such as compressive strength and shrinkage reduction ratio.

Computation of Passive Earth Pressure Coefficient considering Logarithmic Spiral Arc (대수나선 파괴면을 고려한 수동토압계수의 계산)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.425-433
    • /
    • 2019
  • In this study, a simple method of calculating the passive earth pressure coefficient, which is based on the limit equilibrium method, was proposed and the calculated earth pressure coefficients were compared with those of several researchers. The angle of the linear failure surface, which is combined with the logarithmic spiral arc, to the failure surfaces of the passive zone was derived and the whole passive thrust acting on the Rankine passive zone was considered in the proposed method instead of considering the horizontal component of passive thrust. The variations of the passive earth pressure coefficients of the proposed method showed the same tendency as that of the Coulomb's passive earth pressure coefficients with an inclined angle of backfill and internal friction angle. The magnitude of passive earth pressure coefficients of the proposed method were smaller than those of the Coulomb in almost all cases. A comparison of the passive earth pressure coefficients with the wall friction angle revealed the passive earth pressure coefficients of the proposed method to be smaller than those of the Coulomb and the differences between the two values increased with increasing internal friction angle and wall friction angle. A comparison of the passive earth pressure coefficients of the proposed method with those of the existing researchers for the considered internal friction angles of $25^{\circ}$, $30^{\circ}$, $35^{\circ}$, and $40^{\circ}$ and three wall friction angles revealed the maximum percentage differences for the Kerisel and Absi method, Soubra method, Lancellotta method, $Ant\tilde{a}o$ et al. method, Kame method, and Reddy et al. method to be 4.8%, 3.8%, 31.1%, 4.0%, 20.6%, and 12.8% respectively. The passive earth pressure coefficient and existing pressures were similar in all cases.

Conservation Treatment and Study on Manufacturing Techniques of Jija Chongtong Gun in the Middle of Joseon Dynasty (조선 중기 제작된 지자총통의 보존처리와 제작기법 연구 -동아대학교 석당박물관 소장 보물 지자총통을 중심으로-)

  • Nam Dohyeon;Park Younghwan;Lee Jaesung
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.23-46
    • /
    • 2023
  • The Jija Chongtong Gun, owned by Seokdang Museum of Dong-A University, is a tubedstyle heavy weapon of the battlefield in the mid-Joseon Dynasty and is the second largest firearm after Cheonja Chongtong. The original surface color of the Jija Chongtong Gun was obscured by foreign substances and therefore it was judged that its condition requires the conservation treatment. For stable conservation treatment, gamma ray and X-ray non-destructive transmission surveys was conducted to determine the internal structure and conservation condition. And the component analysis on the material components and surface contaminants of Jija Chongtong Gun was conducted by utilizing the p-XRF component analysis, SEM-EDS component analysis, and XRD analysis. As a result of the gamma-ray and X-ray non-destructive transmission investigation, a large amount of air bubbles was observed inside Jija Chongtong Gun, and the part that appeared to be a chaplet by visual observation was not identified. As a result of gamma-ray and p-XRF component analysis, it was confirmed that Jija Chongtong Gun was bronze made of copper (Cu), tin (Sn), and lead (Pb) alloy. As a result of surface analysis of foreign substances using SEM-EDS, it was confirmed that the main components of white foreign substances were calcium (Ca), sulfur (S), and titanium (Ti). Titanium was presumed to be titanium dioxide (TiO2), the main component of white correction fluid. The red foreign substance was confirmed to contain barium (Ba) as its main ingredient, and was presumed to be barium sulfate (BaSO4), an extender pigment in paint. White and red contaminants, mainly composed of titanium and barium, are presumed to have been deposited on the surface in recent years. The yellow foreign substances were confirmed to be aluminum (Al) and silicon (Si), and were presumed to have originated from soil components. As a result of SEM-EDS and XRD component analysis, the white foreign substance was confirmed to be gypsum (CaS). Based on the results of component analysis, surface impurities were removed, stabilization treatment, and strengthening treatment were performed. During the conservation process, unknown inscriptions Woo (右), Byeong (兵), Sang (上), and Yi (二) were discovered through a portable microscope and precise 3D scanning. In addition, the carving method, depth, and width of the inscription were measured. Woo Byeong Sang is located above Happo Fortress in Changwon, and Yi can be identified as the second hill.

A Comparative Study of Commercial Catalysts for Methanol Steam Reforming (메탄올 수증기 개질반응에서의 상용촉매 비교연구)

  • Park, Jung-Eun;Park, Jae-Hyun;Yim, Sung-Dae;Kim, Chang-Soo;Park, Eun-Duck
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.21-27
    • /
    • 2011
  • The comparison work was conducted for the methanol steam reforming among commercial Cu-based catalysts, viz. ICI-M45, which is for the methanol synthesis, MDC-3 and MDC-7, which are for the water-gas shift reaction. The catalytic activity for the water-gas shift reaction was also compared over three catalysts. Among them, MDC-7 showed the highest methanol conversion and formation rate of hydrogen and carbon dioxide at 473 K for the methanol steam reforming. To find out any promotional effect between ICI-M45 and MDC-7, three different packing methods with these two catalysts were examined. However, no synergistic effect was observed. The catalytic activity for watergas shift reaction decreased in the following order: MDC-7 > MDC-3 > ICI-M45. The highest activity of MDC-7 for the methanol steam reforming as well as the water-gas shift reaction can be due to its high surface area, copper dispersion, and an adequate Cu/Zn ratio.

Sodium Sulfur Battery for Energy Storage System (대용량 에너지 저장시스템을 위한 나트륨 유황전지)

  • Kim, Dul-Sun;Kang, Sungwhan;Kim, Jun-Young;Ahn, Jou-Hyeon;Lee, Chang-Hui;Jung, Keeyoung;Park, Yoon-Cheol;Kim, Goun;Cho, Namung
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.111-122
    • /
    • 2013
  • Sodium sulfur (NAS) battery is a high energy storage system (ESS). These days, as the use of renewable green energy like wind energy, solar energy and ocean energy is rapidly increasing, the demand of ESS is increasing and NAS battery is considered to be one of the most promising ESS. Since NAS battery has a high energy density(3 times of lead acid battery), long cycle life and no self-charge and discharge, it is a good candidate for ESS. A NAS battery consists of sulfur as the positive electrode, sodium as the negative electrode and ${\beta}$"-alumina as the electrolyte and a separator simultaneously. Since sulfur is an insulator, carbon felt should be used as conductor with sulfur and so the composition and property of the cathode could largely influence the cell performance and life cycle. Therefore, in this paper, the composition of NAS battery, the property of carbon felt and sodium polysulfides ($Na_2S_x$, intermediates of discharge), and the effects of these factors on cycle performance of cells are described in detail.

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.

Interfacial reaction and Fermi level movements of p-type GaN covered by thin Pd/Ni and Ni/Pd films

  • 김종호;김종훈;강희재;김차연;임철준;서재명
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.115-115
    • /
    • 1999
  • GaN는 직접천이형 wide band gap(3.4eV) 반도체로서 청색/자외선 발광소자 및 고출력 전자장비등에의 응용성 때문에 폭넓게 연구되고 있다. 이러한 넓은 분야의 응용을 위해서는 열 적으로 안정된 Ohmic contact을 반드시 실현되어야 한다. n-type GaN의 경우에는 GaN계면에서의 N vacancy가 n-type carrier로 작용하기 때문에 Ti, Al, 같은 금속을 접합하여 nitride를 형성함에 의해서 낮은 접촉저항을 갖는 Ohmic contact을 하기가 쉽다. 그러나 p-type의 경우에는 일 함수가 크고 n-type와 다르게 nitride가 형성되지 않는 금속이 Ohmic contact을 할 가능성이 많다. 시료는 HF(HF:H2O=1:1)에서 10분간 초음파 세척을 한 후 깨끗한 물에 충분히 헹구었다. 그런 후에 고순도 Ar 가스로 건조시켰다. Pd와 Ni은 열적 증착법(thermal evaporation)을 사용하여 p-GaN에 상온에서 증착하였다. 현 연구에서는 열처리에 의한 Pd의 clustering을 줄이기 위해서 wetting이 좋은 Ni을 Pd 증착 전과 후에 삽입하였으며, monchromatic XPS(x-ray photoelectron spectroscopy) 와 SAM(scanning Auger microscopy)을 사용하여 열처리 전과 40$0^{\circ}C$, 52$0^{\circ}C$ 그리고 695$0^{\circ}C$에서 3분간 열처리 후의 온도에 따른 morphology 변화, 계면반응(interfacial reaction) 및 벤드 휨(band bending)을 비교 연구하였다. Nls core level peak를 사용한 band bending에서 Schottky barrier height는 Pd/Ni bi-layer 접합시 2.1eV를, Ni/Pd bi-layer의 경우에 2.01eV를 얻었으며, 이는 Pd와 Ni의 이상적인 Schottky barrier height 값 2.38eV, 2.35eV와 비교해 볼 때 매우 유사한 값임을 알 수 있다. 시료를 후열처리함에 의해 52$0^{\circ}C$까지는 barrier height는 큰 변화가 없으나, $650^{\circ}C$에서 3분 열처리 후에 0.36eV, 0.28eV 만큼 band가 더 ?을 알 수 있었다. Pd/Ni 및 Ni/Pd 접합시 $650^{\circ}C$까지 후 열 처리 과정에서 계면에서 matallic Ga은 온도에 비례하여 많은 양이 형성되어 표면으로 편석(segregation)되어지나, In-situ SAM을 이용한 depth profile을 통해서 Ni/Pd, Pd/Ni는 증착시 uniform하게 성장함을 알 수 있었으며, 후열처리 함에 의해서 점차적으로 morphology 의 변화가 일어나기 시작함을 볼 수 있었다. 이는 $650^{\circ}C$에서 열처리 한후의 ex-situ AFM을 통해서 재확인 할 수 있었다. 이상의 결과로부터 GaN에 Pd를 접합 시 심한 clustering이 형성되어 Ohoic contact에 문제가 있으나 Pd/Ni 혹은 Ni/Pd bi-layer를 사용함에 의해서 clustering의 크기를 줄일 수 있었다. Clustering의 크기는 Ni/Pd bi-layer의 경우가 작았으며, $650^{\circ}C$ 열처리 후에 barrier height는 Pd/Ni bi-layer의 경우에도 Ni의 영향을 받음을 알 수 있었다.

  • PDF

Comparison of Growth Characteristics and Compounds of Ginseng Cultivated by Paddy and Upland Cultivation (논 . 밭재배에 따른 인삼의 생육 및 성분 특성 비교)

  • Lee, Sung-Woo;Kang, Seung-Won;Kim, Do-Yong;Seong, Nak-Sul;Park, Hee-Woon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • This study was carried out to investigate the difference of growth characteristics and the content of root chemical components in four years old ginseng by paddy and upland cultivation at farmers' field in Korea. Proportions of silt, clay, liquid phase and porosity were higher in paddy soil than upland soil. The range of liquid phase was $17.5{\sim}19.5%$ in paddy and $7.0{\sim}12.8%$ in upland during growth period. EC and the other contents of OM, $NO_3^-,\;K_2O$, and Mg in paddy soil were higher than those of upland soil, while the contents of $P_2O_5$ and Ca were less than those of upland soil. The levels of chemical components of tested soil exceeded recommended range in EC, $NO_3^-$ and Ca of paddy soil, and in $P_2O_5$ and Ca of upland soil. Stem length, fresh root weight and total dry weight per plant in paddy were greater than those of upland. Root weight in paddy-ginseng showed a great increase on September, while it was not increased in upland because of early defoliation. Net assimilation rate and crop growth rate by paddy and upland cultivation showed distinct differences on May and September, and those of paddy-ginseng were higher than those of upland-ginseng. Yield and ratio of red-colored root showed no significant difference by paddy and upland cultivation, while significant differences were observed in diameter and length of primary root, contents of crude saponin and 50% ethanol extracts of primary root, and water content of root. Hardness of primary root showed no significant difference by paddy and upland cultivation until August, but it showed distinct difference on September, at which the hardness in upland cultivation was drastically decreased.