• Title/Summary/Keyword: $Al_2O_3/Fe$ ratio

Search Result 145, Processing Time 0.026 seconds

The Study on Removal of Residual Aluminum in Raw Water (상수원수 중 잔류알루미늄 제거에 관한 연구 (황토와 R-Calmont를 이용하여))

  • 이지헌;김환범;안길원;박찬오;김익산;이종현;박혜영;박송인
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.57-68
    • /
    • 1998
  • This study was surveyed to examine the removable ability of residual aluminum with the coagulants(LAS, PAC) and the auxiliary coagulants(Loess, R-calmont) on raw water. The leaching test of the auxiliary coagulant showed that the loess contained a lot of Al, Fe and Mn. On the reverse, the R-calmont was a little. Most of the loess were composed of $SiO_{2}$ 53.25%, $Al_{2}O_{3}$ 29.28%, $Fe_{2}O_{3}$ 10.73% and Si/Al ratio was 3.08. In using both LAS vs. loess and PAC vs. loess as the coagulated material, the removal of residual aluminum was the highest as 96.3%, 96.6% respectively, and that of the residual turbidity was 95.0% when PAC vs. R-calmont was dosed 0.2mg/L. Also, loess showed better than R-calmont in the removable efficiency of aluminum and turbidity. When the setting time of auxiliary coagulant was input ar the same time with coagulant, the removal aluminum was the highest as 93.3% to 96.6%.

  • PDF

Synergy Effect of Fe/ZSM-5 and Co-Pt/ZSM-5 for NOx removal (NOx제거를 위한 Fe/ZSM-5와 Co-Pt/ZSM-5의 상승 효과)

  • Kim, Jin-Gul;Yoo, Seung-Joon;Kim, Seong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2390-2395
    • /
    • 2009
  • In the condition of GHSV=$30000\;hr^{-1}$, $NO_x$ removal yield was higher as mole ratio of $SiO_2/Al_2O_3$ for Fe/ZSM-5 was lower regardless of preparation method such as CVD (chemical vapor deposition) and dry impregnation. In addition to this, Fe/ZSM-5 catalyst showed about 50% $NO_x$ removal yield between $350^{\circ}C$ - $400^{\circ}C$ while CO formed significantly. To remove newly formed CO over Fe/ZSM-5, Co-Pt/ZSM-5 was used in conjunction with Fe/ZSM-5 in the series and this demonstrated over 90% removal yield of both NOx and CO at $250^{\circ}C$ and GHSV=$30000\;hr^{-1}$.

Magnetotransport Properties of Co-Fe/Al-O/Co-Fe Tunnel Junctions Oxidized with Microwave Excited Plasma

  • Nishikawa, Kazuhiro;Orata, Satoshi;Shoyama, Toshihiro;Cho, Wan-Sick;Yoon, Tae-Sick;Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • Three fabrication techniques for forming thin barrier layer with uniform thickness and large barrier height in magnetic tunnel junction (MTJ) are discussed. First, the effect of immiscible element addition to Cu layer, a high conducting layer generally placed under the MTJ, is investigated in order to reduce the surface roughness of the bottom ferromagnetic layer, on which the barrier is formed. The Ag addition to the Cu layer successfully realizes the smooth surface of the ferromagnetic layer because of the suppression of the grain growth of Cu. Second, a new plasma source, characterized as low electron energy of 1 eV and high density of $10^{12}$ $cm^{-3}$, is introduced to the Al oxidation process in MTJ fabrication in order to reduce damages to the barrier layer by the ion-bombardment. The magnetotransport properties of the MTJs are investigated as a function of the annealing temperature. As a peculiar feature, the monotonous decrease of resistance area product (RA) is observed with increasing the annealing temperature. The decrease of the RA is due to the decrease of the effective barrier width. Third, the influence of the mixed inert gas species for plasma oxidization process of metallic Al layer on the tunnel magnetoresistance (TMR) was investigated. By the use of Kr-O$_2$ plasma for Al oxidation process, a 58.8 % of MR ratio was obtained at room temperature after annealing the junction at $300{^{\circ}C}$, while the achieved TMR ratio of the MTJ fabricated with usual Ar-$0_2$ plasma remained 48.4%. A faster oxidization rate of the Al layer by using Kr-O$_2$ plasma is a possible cause to prevent the over oxidization of Al layer and to realize a large magnetoresistance.

Authigenic Phillipsite in Deep-sea Manganese Nodules from the Clarion-Clipperton Fracture Zones, NE Equatorial Pacific (적도 북동 태평양, 클라리온-클리퍼톤 균열대에서 산출되는 망간단괴내의 자생 필립사이트)

  • Lee, Chan Hee;Lee, Sung-Rock
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.421-428
    • /
    • 1996
  • The occurrence, optical property, chemical composition, crystal structure and formation environments of the phillipsite within deep-sea manganese nodules were systematically investigated in this study. Phillipsite in manganese nodules occurs in nucleus of nodules along with consolidated bottom sediments, weathered volcanic debris, and interstitial grains in the each layer of manganese encrusts. Phillipsite is predominantly pseudomorphs of volcanic shards, and occurs as white to pale yellow in color lath-shaped and equant crystals. These show aggregations of prismatic, blocky, and bladed of 2 to $20{\mu}m$ long, and 2 to $5{\mu}m$ thick. The simplified average chemical formula of phillipsite is $({Ca_{0.1}Mg_{0.3}Na_{1.1}K_{1.5}})_3{(Fe_{0.3}Al_{4.2}Si_{11.8})O_{32}{\cdot}10H_2O}$ with a very siliceous and alkalic. The $Si/(Al+Fe^{+3})$ ratio is 2.37 to 2.78 and alkalis greatly exceed the divalent exchangeable cations, and Na/K ratio is 0.59 to 0.81. The phillipsite is monoclinic ($P2_l/m$) with the unit-cell parameters, $a=10.005{\AA}$, $b=14.129{\AA}$, $c=8.686{\AA}$, ${\beta}=124.35^{\circ}$, and $V=1013.6{\AA}^3$. Phillipsites in manganese nodules formed apparently authigenically at a temperature less than $10^{\circ}C$, and they crystallized at a pressure of less than 0.7 kb, and pH of about 8 in deep-sea environments.

  • PDF

Composition and Microstructure of Punch'ong Sherds from Bokwang-ri, Kangnung (강릉 보광리 분청도편의 성분과 미세구조 연구)

  • Kim, Kyung-nam;Han, Sang-mok;Shin, Dae-yong
    • Journal of Conservation Science
    • /
    • v.8 no.1 s.11
    • /
    • pp.10-15
    • /
    • 1999
  • The chemical compositions and microstructure of the punch'ong excavated from Bokwangri, Kangnung were investigated by the scanning electron microscope (SEM) with an energy dispersive X-ray spectrometer (EDS), X-ray diffractometer (XRD), and dilatometer. The compositions of body were $SiO_2(73-78\%),\;Al_2O_3(13-16\%)$, $RO{\cdot}R_2O(4-5\%,\;R=Ca,\;Mg,\;Na,\;K),\;R_xO_y(3-6\%,\;R=Fe,Ti)$ in weight ratio, which were higher silica and flux $(RO{\cdot}R_2O)$ but lower alumina. Owing to the high content$(21-30\%)$ of calcium oxide the glaze is considered lime type. Firing temperature range for the ceramic was presumed to about $1150^{\circ}C$.

  • PDF

Synthesis of High Purity Al2O3 from Low Grade Bauxite Ore(II) (저품위 Bauxite로부터 고순도 Al2O3의 합성(II))

  • Kwon, Kung-Taek;Song, Yon-Ho;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.597-608
    • /
    • 1994
  • A new process for the production of high purity ${\alpha}-Al_2O_3$ from ammonium aluminium sulfate solution abtained through the sulfation of low grade bauxite ore with $(NH_4)_2SO_4$, and leaching of the sulfated product was investigated. This process is consisted of solvent extraction for Fe component removal from ammonium aluminum sulfate solution and homogeneous precipitation of Al containing precipitate from the refined ammonium aluminium sulfate solution by using urea as precipitator. The optimum conditions of solvent extraction with Alamine 336 as extractant were shaking time of 4min, organic phase ratio to aqueous phase of 0.25. The types of precipitation products from this precipitation were amorphous alumina gel, pseudo-boehmite and crystalline boehmite in the lower temperature of $100^{\circ}C$, in the range from $125^{\circ}C$ to $150^{\circ}C$, and above $150^{\circ}C$, respectively. And also amorphous alumina gel hydrate in $1000^{\circ}C$ and crystalline boehmite in $1250^{\circ}C$ were tranfered to ${\alpha}-Al_2O_3$, respectively. This alumina was identified as ${\alpha}-Al_2O_3$ of purity 99.7%.

  • PDF

Growth and Characterization of LaAlO$_3$ Single Crystals by the Traveling Solvent Floating Zone Method (Travelin Solvent Floating Zone법에 의한 LaAlO$_3$ 단결정의 성장 및 특성)

  • 정일형;임창성;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.280-286
    • /
    • 1998
  • LaAlO3 Single crystals used as a substrate for thin film depositions of a high temperature oxide su-perconductor YB2Cu3O7 and applied to microwave frequencies were grown by the Traveling Solvent Flati-ing Zone (TSFZ) method and characterized. For the growth of LaAlO3 single crystals polycrystalline fe-edrods were prepared from powder mixture of La2O3 and Al2O3 with a mole ratio of 1:1 calcined at 110$0^{\circ}C$ for 3h and sintered at 140$0^{\circ}C$ for 4h The growth LaAlO3 crystals was 4-5mm in diameter 30mm in length and dark brown. The growth rate was 2-3mm/h and the rotation speeds were 10rpm for an upper ro-tation and 40 rpm for a lower rotation The growing crystals and the feedrods were counter-rotated. The orientation of the grown single crystals of LaAlO3 was identified to be [111] direction. Dielectric constants were measured to be 30-33 between 100 kHz and 1 MHz in the 30$0^{\circ}C$ to 45$0^{\circ}C$ temperature range and 102 in a range of 100 kHz at the phase transformation temperature of 522$^{\circ}C$ Dielectric losses were calculated to be 1.8$\times$10-4 at the room temperature and 5.7$\times$10-3 at the phase transformation temperature. Lattice con-stants of the grown crystlals were determined to be aR=5.3806 $\AA$ and $\alpha$=60.043$^{\circ}$ by the least square method.

  • PDF

Material Characteristics of Smelting Slags Produced by Reproduction Experiment of Ancient Iron Smelting : According to Ca Content (고대 제철기술 복원실험에서 산출된 제련재의 칼슘함량에 따른 재료학적 특성)

  • Lee, So Dam;Cho, Nam Chul;Kim, Soo Chul
    • Journal of Conservation Science
    • /
    • v.33 no.4
    • /
    • pp.297-312
    • /
    • 2017
  • In the ancient iron-making process, a slag former was often added so that iron and other minerals in the ore could be smoothly separated. However, there are insufficient data for judging whether a slag former was added. Thus, in this study, we conducted a smelting experiment to understand the material characteristics of a steel structure that differed depending on the addition of a slag former. It was found that the steel structure produced in the first experiment had a total Fe content of 39.45-52.94 wt%, which decreased to 34.89-38.92 wt% in the second and third experiments. CaO compounds such as calcite, gehlenite, and hercynite appeared, in addition to iron oxides, after the addition of a slag former. As a result of an assessment of whether a slag former was added by comparing the ratio between the components, it was found that the ratio of $CaO/SiO_2$ was 0.42. From a comparative analysis of $Al_2O_3/SiO_2$ and $CaO/SiO_2$, it was judged that the ratio of $Al_2O_3$ and $SiO_2$ can be utilized as an index to judge similar systems of smelting process (ore, furnace wall, and fuel).

Medium Temperature and Lower Pressure Metamorphism and Tectonic Setting of the Pyeongan Supergroup in the Munkyeong Area (문경지역에 분포하는 평안누층군의 중온-저압 변성작용과 지구조 환경 해석)

  • Kim, Hyeong Soo;Seo, Bongkyun;Yi, Keewook
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.311-324
    • /
    • 2014
  • The Hongjeom formation of the Pyeongan Supergroup in the Munkyeong coalfield mainly consists of metapsammite and metapelites. Metampelites occur as slate preserving chloritoid+chlorite+muscovite and andalusite+biotite+chlorite+muscovite mineral assemblages. Chloritoid and andalusite occur as porphyroblast, and the matrix composed of fine-grained micas. Metamorphic P-T conditions for these mineral assemblages are $510-520^{\circ}C$ and 3.0-3.5kbar based on P-T pseudosection in $MnO-K_2O-FeO-MgO-Al_2O_3-SiO_2-H_2O(MnKFMASH)$ system and isopleth intersections of Fe/(Fe+Mg) ratios in chloritoid and chlorite. The medium temperature and low pressure metamorphism resulted from a higher geothermal gradient ($40-45^{\circ}C/km$) condition than that of burial metamorphism. The youngest (SHRIMP U-Pb age; ca. 327-310 Ma) detrital zircon grains from the Hongjeom formation display oscillatory zoning and relatively high Th/U ratio (0.60-1.12). Based on the previous sedimentary, paleontological, and geochronological studies in the Taebaeksan basin together with results of this study, we suggest that (1) initial deposition of the Hongjeom formation was contemporaneous with a magmatic activity in the provenance, (2) the Pyeongan Supergroup was deposited in an arc-related basin at an active continental margin during the Carboniferous to Permain, and (3) magmatic activities occurred repetitively in relatively short interval in the active continental margin had continuously supplied sediments to the basin.

Oxidation Process for the Etching Solution Regeneration of Ferric Chloride Using Liquid and Solid Oxidizing Agent (염화철 에칭 용액 재생을 위한 액상 및 고상 산화제를 이용한 산화공정에 대한 연구)

  • Kim, Dae-Weon;Park, Il-Jeong;Kim, Geon-Hong;Chae, Byung-man;Lee, Sang-Woo;Choi, Hee-Lack;Jung, Hang-Chul
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.158-162
    • /
    • 2017
  • $FeCl_3$ solution has been used as an etchant for metal etching such as Fe, Cu, Al and Ni. In the etching process, $Fe^{3+}$ is reduced to $Fe^{2+}$ and the etching efficiency is decreased. Waste $FeCl_3$ etchant has environmental, economic problems and thus the regeneration of the etching solution has been required. In this study, HCl was mixed with the $FeCl_2$ solution and then, $H_2O_2$, $NaClO_3$ were added into the mixed solution to oxidize the $Fe^{2+}$. During the oxidation process, oxidation-reduction potential (ORP) was measured and the relationship between ORP and oxidation ratio was investigated. The ORP is increased with increasing the concentration of $H_2O_2$ and $NaClO_3$, and then the ORP is decreased with oxidation progress. Such a behavior was in good agreement with Nernst's equation. Also, the oxidation efficiency was about 99% when a sufficient amount of HCl and $H_2O_2$, $NaClO_3$ were added.