Journal of the Institute of Electronics Engineers of Korea SD
/
v.48
no.6
/
pp.1-6
/
2011
A transparent oxide thin film transistors (Transparent Oxide-TFT) have been fabricated by RF magnetron sputtering at room temperature using amorphous indium zinc oxide (a-IZO) as both of active channel and source/drain, gate electrodes and co-sputtered $HfO_2-Al_2O_3$ (HfAIO) as gate dielectric. In spite of its high dielectric constant > 20), $HfO_2$ has some drawbacks including high leakage current and rough surface morphologies originated from small energy band gap (5.31eV) and microcrystalline structure. In this work, the incorporation of $Al_2O_3$ into $HfO_2$ was obtained by co-sputtering of $HfO_2$ and $Al_2O_3$ without any intentional substrate heating and its structural and electrical properties were investigated by x-ray diffraction (XRD), atomic force microscopy (AFM) and spectroscopic ellipsometer (SE) analyses. The XRD studies confirmed that the microcrystalline structures of $HfO_2$ were transformed to amorphous structures of HfAIO. By AFM analysis, HfAIO films (0.490nm) were considerably smoother than $HfO_2$ films (2.979nm) due to their amorphous structure. The energy band gap ($E_g$) deduced by spectroscopic ellipsometer was increased from 5.17eV ($HfO_2$) to 5.42eV (HfAIO). The electrical performances of TFTs which are made of well-controlled active/electrode IZO materials and co-sputtered HfAIO dielectric material, exhibited a field effect mobility of more than $10cm^2/V{\cdot}s$, a threshold voltage of ~2 V, an $I_{on/off}$ ratio of > $10^5$, and a max on-current of > 2 mA.
Proceedings of the Korean Vacuum Society Conference
/
2015.08a
/
pp.169.2-169.2
/
2015
$VO_2$ is a well-known a metal-to-insulator-transition (MIT) material, accompanied with a first order structural phase transition near room temperature. Because of the structural phase transition and the MIT occur near a same temperature, there is an ongoing argument whether the MIT is induced by the structural phase transition. $VO_2$ exhibits a relatively weak anti-oxidization ability and can be oxidized to higher-valence oxides (e.g., $V_4$$O_7$ or $V_2$$O_5$) when annealed at a high temperature in an oxygen-rich atmosphere. We fabricated $VO_2$ films on $Al_2$$O_3$ (0001) substrates using a DC magnetron sputtering deposition process with carefully control the $O_2$ percentage in an atmosphere. X-ray diffraction measurements from the films showed only (0l0) peaks with no extra peaks, indicating b-oriented films. The temperature-dependent local structural properties of $VO_2$ films were investigated by using in-situ X-ray absorption fine structure (XAFS) measurements at the V K edge. XAFS revealed that the structural phase transition was occurred nearly $70^{\circ}C$ for heating process and reproducible. Resistance measurements as a function of temperature (R-T) demonstrated that the resistance of $VO_2$ films was changed by a factor of 4 near $75^{\circ}C$ which was higher than $68^{\circ}C$ reported from a $VO_2$ bulk. We will discuss the MIT of $VO_2$ films, comparing with the local structural properties determined by XAFS measurements.
Proceedings of the Korean Vacuum Society Conference
/
2012.08a
/
pp.299-299
/
2012
투명전도산화물 박막은 디스플레이, 태양전지, 압전소자 등 다양한 응용분야에 많이 이용되고 있는 소재이다. 그 중에서 현재 산업에서 활용 빈도가 높은 투명전도막의 재료는 ITO를 기반으로 하는 물질이다. 하지만 인듐의 높은 생산단가와 플라즈마 노출시 열화로 인한 문제점 때문에 기존의 ITO를 대체하기 위한 새로운 재료에 관심이 증대되고 있다. 본 연구에서는 대표적인 ITO 대체 물질 중의 하나인 ZnO 박막에 대해서 증착환경변화에 따른 물성변화를 조사하였다. 먼저 대기중에서 안정화된 ZnO 박막을 얻기 위해서 인(P) 2% 첨가된 ZnO 세라믹을 고상반응법으로 제작하고, 펄스레이저 증착법을 이용하여 Al2O3(0001)기판에 산소분압을 30~150 mTorr로 변화를 주어 P-ZnO 박막을 제작하였다. 이 때 증착온도는 $400^{\circ}C$로 고정하였다. X선 회절 결과로부터 산소분압에 상관없이 ZnO (002)방향으로 증착되었다. 하지만 결정립의 크기는 산소분압이 증가하면서 줄어들고, ZnO (002)피크로부터 얻어진 격자상수(c-축)는 벌크 값에 가까워짐을 알 수 있었다. 하지만 P첨가로 인해서 박막의 격자상수는 순수한 ZnO 벌크 값 보다 큰 것으로 알 수 있다. 산소분압 변화에 따른 P-ZnO 박막의 산화 상태는 X-선 광전자 분광기를 이용하여 측정하였다. 그 결과 산소 core-level의 스펙트럼은 자연산화, 산소 vacancy, Zn-O 결합으로 구성되어짐을 알 수 있었다. 산소분압이 증가하면 Zn-O 결합은 증가하지만 산소 vacancy는 감소함을 알 수 있었다. 전기적 특성 결과 P-ZnO 박막은 30 mTorr에서는 n형 반도체 특성, 100 mtorr에서 p형 반도체의 특성이 나타내었고, 산소분압이 증가하면 다시 n형 반도체 특성을 나타냄을 알 수 있었다. 광학적 특성 결과 P-ZnO 박막은 산소분압에 상관없이 가시광선 영역에서 80%이상의 투과율을 나타내었으며, 산소분압이 증가할수록 에너지 갭이 증가하였다.
Kang, W.N.;Kim, Hyeong-Jin;Park, Eun-Mi;Kim, Mun-Seong;Kim, Kijoon H. P.
Progress in Superconductivity
/
v.3
no.2
/
pp.135-139
/
2002
We have fabricated high-quality c-axis-oriented $MgB_2$ thin films by using a pulsed laser deposition technique. The thin films grown on (1 1 0 2) $Al_2$$O_3$ substrates show an onset transition temperature of 39.2 K with a sharp transition width of ~0.15 K. X-ray diffraction patterns indicate a c-axis-oriented crystal structure perpendicular to the substrate surface. We observed high critical current densities ($J_{c}$) of ~ 16 $MA/\textrm{cm}^2$ at 15 K and under self-field, which is comparable to or exceeds those of cuprate high-temperature superconductors. The extrapolation $J_{c}$ at 5 K was estimated to be ~ 40 MA/$\textrm{cm}^2$, which is the highest record for $MgB_2$ compounds. At a magnetic field of 5 T, the $J_{c}$ of~ 0.1 $MA/\textrm{cm}^2$ was detected at 15 K, suggesting that this compound is very promising candidate for the practical applications at high temperature with lower power consumption. As a possible explanation for the high current-carving capability, the vortex-glass phase will be discussed.d.d.d.
Pandey, Rina;Cho, Se Hee;Hwang, Do Kyung;Choi, Won Kook
Proceedings of the Korean Vacuum Society Conference
/
2014.02a
/
pp.335-335
/
2014
Over the past several years, transparent conducting oxides have been extensively studied in order to replace indium tin oxide (ITO). Here we report on fluorine doped zinc tin oxide (FZTO) films deposited on glass substrates by radio-frequency (RF) magnetron sputtering using a 30 wt% ZnO with 70 wt% SnO2 ceramic targets. The F-doping was carried out by introducing a mixed gas of pure Ar, CF4, and O2 forming gas into the sputtering chamber while sputtering ZTO target. Annealing temperature affects the structural, electrical and optical properties of FZTO thin films. All the as-deposited FZTO films grown at room temperature are found to be amorphous because of the immiscibility of SnO2 and ZnO. Even after the as-deposited FZTO films were annealed from $300{\sim}500^{\circ}C$, there were no significant changes. However, when the sample is annealed temperature up to $600^{\circ}C$, two distinct diffraction peaks appear in XRD spectra at $2{\Theta}=34.0^{\circ}$ and $52.02^{\circ}$, respectively, which correspond to the (101) and (211) planes of rutile phase SnO2. FZTO thin film annealed at $600^{\circ}C$ resulted in decrease of resistivity $5.47{\times}10^{-3}{\Omega}cm$, carrier concentration ~1019 cm-3, mobility~20 cm2 V-1s-1 and increase of optical band gap from 3.41 to 3.60 eV with increasing the annealing temperatures and well explained by Burstein-Moss effect. Change of work function with the annealing temperature was obtained by ultraviolet photoemission spectroscopy. The increase of annealing temperature leads to increase of work function from ${\phi}=3.80eV$ (as-deposited FZTO) to ${\phi}=4.10eV$ ($600^{\circ}C$ annealed FZTO) which are quite smaller than 4.62 eV for Al-ZnO and 4.74 eV for SnO2. Through X-ray photoelectron spectroscopy, incorporation of F atoms was found at around the binding energy of 684.28 eV in the as-deposited and annealed FZTO up to 400oC, but can't be observed in the annealed FZTO at 500oC. This result indicates that F atoms in FZTO films are loosely bound or probably located in the interstitial sites instead of substitutional sites and thus easily diffused into the vacuum from the films by thermal annealing. The optical transmittance of FZTO films was higher than 80% in all specimens and 2-3% higher than ZTO films. FZTO is a possible potential transparent conducting oxide (TCO) alternative for application in optoelectronics.
Transactions on Electrical and Electronic Materials
/
v.10
no.3
/
pp.93-96
/
2009
The Al-doped ZnO (AZO) films were deposited on a glass substrate by RF magnetron sputtering in pure Ar and $Ar+H_2$ gas ambient at temperature of $100^{\circ}C$ and annealed in hydrogen ambient at the temperature range from 100 to 300 $^{\circ}C$, respectively. It was found that either the addition of hydrogen to the sputtering gas or the annealing treatment effectively reduced the resistivity of the AZO films. When the AZO films were annealed at the temperature of 300 $^{\circ}C$ for lhr in a hydrogen atmosphere, the resistivity decreased from $2.60{\times}10^{-3}\;{\Omega}cm$ to $8.42{\times}l0^{-4}\;{\Omega}cm$ for the film deposited in pure Ar gas ambient. Under the same annealing conditions of temperature and hydrogen ambient, the resistivity of AZO films deposited in the $Ar+H_2$ gas mixture decreased from $8.22{\times}l0^{-4}\;{\Omega}cm$ to $4.25{\times}l0^{-4}\;{\Omega}cm$. The lowest resistivity of $4.25{\times}l0^{-4}\;{\Omega}cm$ was obtained by adding hydrogen gas to the deposition and annealing process. X-ray diffraction (XRD) pattern of all films showed preferable growth orientation of (002) plane. The average transmittance is above 85 % and in the range of 400-1000 nm for all films.
Proceedings of the Korean Vacuum Society Conference
/
2010.08a
/
pp.255-255
/
2010
Recently, nonvolatile memories (NVM) of various types have been researched to improve the electrical performance such as program/erase voltages, speed and retention times. Also, the charge trap memory is a strong candidate to realize the ultra dense 20-nm scale NVM. Furthermore, the high charge efficiency and the thermal stability of SiC nanocrystals NVM with single $SiO_2$ tunnel barrier have been reported. [1-2] In this study, the SiC charge trap NVM was fabricated and electrical properties were characterized. The 100-nm thick Poly-Si layer was deposited to confined source/drain region by using low-pressure chemical vapor deposition (LP-CVD). After etching and lithography process for fabricate the gate region, the $Si_3N_4/SiO_2/Si_3N_4$ (NON) and $SiO_2/Si_3N_4/SiO_2$ (ONO) barrier engineered tunnel layer were deposited by using LP-CVD. The equivalent oxide thickness of NON and ONO tunnel layer are 5.2 nm and 5.6 nm, respectively. By using ultra-high vacuum magnetron sputtering with base pressure 3x10-10 Torr, the 2-nm SiC and 20-nm $SiO_2$ were successively deposited on ONO and NON tunnel layers. Finally, after deposited 200-nm thick Al layer, the source, drain and gate areas were defined by using reactive-ion etching and photolithography. The lengths of squire gate are $2\;{\mu}m$, $5\;{\mu}m$ and $10\;{\mu}m$. The electrical properties of devices were measured by using a HP 4156A precision semiconductor parameter analyzer, E4980A LCR capacitor meter and an Agilent 81104A pulse pattern generator system. The electrical characteristics such as the memory effect, program/erase speeds, operation voltages, and retention time of SiC charge trap memory device with barrier engineered tunnel layer will be discussed.
Proceedings of the Korean Vacuum Society Conference
/
2016.02a
/
pp.287.1-287.1
/
2016
Three-dimensional (3-D) semiconductor nanoarchitectures, including nano- and micro- rods, pyramids, and disks, are emerging as one of the most promising elements for future optoelectronic devices. Since these 3-D semiconductor nanoarchitectures have many interesting unconventional properties, including the use of large light-emitting surface area and semipolar/nonpolar nano- or micro-facets, numerous studies reported on novel device applications of these 3-D nanoarchitectures. In particular, 3-D nanoarchitecture devices can have noticeably different current spreading characteristics compared with conventional thin film devices, due to their elaborate 3-D geometry. Utilizing this feature in a highly controlled manner, color-tunable light-emitting diodes (LEDs) were demonstrated by controlling the spatial distribution of current density over the multifaceted GaN LEDs. Meanwhile, for the fabrication of high brightness, single color emitting LEDs or laser diodes, uniform and high density of electrical current must be injected into the entire active layers of the nanoarchitecture devices. Here, we report on a new device structure to inject uniform and high density of electrical current through the 3-D semiconductor nanoarchitecture LEDs using metal core inside microtube LEDs. In this work, we report the fabrications and characteristics of metal-cored coaxial $GaN/In_xGa_{1-x}N$ microtube LEDs. For the fabrication of metal-cored microtube LEDs, $GaN/In_xGa_{1-x}N/ZnO$ coaxial microtube LED arrays grown on an n-GaN/c-Al2O3 substrate were lifted-off from the substrate by wet chemical etching of sacrificial ZnO microtubes and $SiO_2$ layer. The chemically lifted-off layer of LEDs were then stamped upside down on another supporting substrates. Subsequently, Ti/Au and indium tin oxide were deposited on the inner shells of microtubes, forming n-type electrodes of the metal-cored LEDs. The device characteristics were investigated measuring electroluminescence and current-voltage characteristic curves and analyzed by computational modeling of current spreading characteristics.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2008.06a
/
pp.66-66
/
2008
Most of the properties of ITO films depend on their substrate nature, deposition techniques and ITO film composition. For the display panel application, it is normally deposited on the glass substrate which has high strain point (>575 degree) and must be deposited at a temperature higher than $250^{\circ}C$ and then annealed at a temperature higher than $300^{\circ}C$ in order to high optical transmittance in the visible region, low reactivity and chemical duration. But the high strain point glass (HSPG) used as FPDs is blocking popularization of large sizes FPDs because it is more expensive than a soda lime glass (SLG). If the SLG could be used as substrate for FPDs, then diffusion of Na ion from the substrate occurs into the ITO films during annealing or heat treatment on manufacturing process and it affects the properties. Therefore proper care should be followed to minimize Na ion diffusion. In this study, we investigate the electrical, optical and structural properties of ITO films deposited on the SLG and the Asahi glass(PD200) substrate by rf magnetron sputtering using a ceramic target ($In_2O_3:SnO_2$, 90:10wt.%). These films were annealed in $N_2$ and air atmosphere at $400^{\circ}C$ for 20min, 1hr, and 2hrs. ITO films deposited on the SLG show a high electrical resistivity and structural defect as compared with those deposited on the PD200 due to the Na ion from the SLG on diffuse to the ITO film by annealing. However these properties can be improved by introducing a barrier layer of $SiO_2$ or $Al_2O_3$ between ITO film and the SLG substrate. The characteristics of films were examined by the 4-point probe, FE-SEM, UV-VIS spectrometer, and X-ray diffraction. SIMS analysis confirmed that barrier layer inhibited Na ion diffusion from the SLG.
Journal of the Korean Crystal Growth and Crystal Technology
/
v.23
no.2
/
pp.108-113
/
2013
Chalcopyrite material $CuInSe_2$ (CIS) is known to be a very prominent absorber layer for high efficiency thin film solar cells. Current interest in the photovoltaic industry is to identify and develop more suitable materials and processes for the fabrication of efficient and cost-effective solar cells. Various processes have been being tried for making a low cost CIS absorber layer, this study obtained the CIS nanoparticles using commercial powder of 6 mm pieces for low cost CIS absorber layer by high frequency ball milling and cryogenic milling. And the CIS absorber layer was prepared by paste coating using milled-CIS nanoparticles in glove box under inert atmosphere. The chalcopyrite $CuInSe_2$ thin films were successfully made after selenization at the substrate temperature of $550^{\circ}C$ in 30 min, CIS solar cell of Al/ZnO/CdS/CIS/Mo structure prepared under various deposition process such as evaporation, sputtering and chemical vapor deposition respectively. Finally, we achieved CIS nanoparticles solar cell of electric efficient 1.74 % of Voc 29 mV, Jsc 35 $mA/cm^2$ FF 17.2 %. The CIS nanoparticles-based absorber layers were characterized by using EDS, XRD and HRSEM.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.