• Title/Summary/Keyword: $AlCl_3$

Search Result 717, Processing Time 0.022 seconds

Dehydrogenative Polymerization of New Alkylsilanes Catalyzed by $Cp_2MCl_2$/Red-Al System (M=Ti, Hf): Synthesis of Poly(substituted 3-phenyl-1-silabutanes)

  • U, Hui Gwon;Han, Mi Gyeong;Jo, Eun Jeong;Jeong, Il Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.1
    • /
    • pp.58-62
    • /
    • 1995
  • Substituted 3-phenyl-1-silabutanes such as 3-phenyl-1-silabutane (1), 3-(2,5-dimethylphenyl)-1-silabutane (2), 3-(p-chlorotolyl)-1-silabutane (3), and 3-naphthyl-1-silabutane (4) were prepared in 62-96% yield by reduction of the corresponding substituted 3-phenyl-1,1-dichloro-1-silabutanes with LiAlH4. The dehydrogenative polymerization of the monomer silanes was carried out with Cp2MCl2/Red-Al (M=Ti, Hf) catalyst system. The molecular weight of the polymers produced ranged from 700 to 1300 (vs polystyrene) with degree of polymerization (DP) of 5 through 16 and with polydispersity index (PDI)=1.1-2.1. The dehydrogenative polymerization of the monomer silanes with Cp2TiCl2/Red-Al catalyst system occurred at a faster rate and produced somewhat higher molecular weights of polysilane than that with Cp2HfCl2/Red-Al catalyst system.

A Study on Synthesis of Mayenite by Using Recycled Aluminium Resource for Application in Insulating Material (알루미늄 재활용 소재를 이용한 내화재용 Mayenite 합성 연구)

  • Im, Byoungyong;Kang, Yubin;Joo, Soyeong;Kim, Dae-Guen
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.65-72
    • /
    • 2020
  • Black dross is a dark gray dross generated during the aluminum recycling process that uses flux, and contains NaCl, KCl, Al2O3, MgO, etc. Black dross is separated into soluble substances (NaCl, KCl) and insoluble substances (Al2O4, MgO) through the dissolution process. Soluble materials can be reused as salt flux, and Al2O3 and MgO can be upcycled to various ceramic materials through the synthesis process. In this study, Mayenite was synthesized using Al2O3 and MgO recovered from black dross, and the synthesis was performed according to the mixing ratio and reaction temperature. It was confirmed that when Mayenite was synthesized using black dross (spinel) and CaCO3, precursors were changed to Mg0.4Al2.4O4 and CaO at 700 ℃, and to Ca12Al14O33 (Mayenite) after 800 ℃. In the mixing conditions experiment, it was confirmed that the Mayenite XRD peak increased with increase of the CaCO3 content, and the Mg0.4Al2.4O4 XRD peak decreased. As a result of the BET analysis of the synthesized powder, the surface area decreased as the fine particles were grown and agglomerated in the process of generating mayenite.

Dehydrogenative Polymerization of New Alkylsilanes Catalyzed by $Cp_2MCl_2$/Red-Al System (M=Ti, Hf)

  • 우희권;김숙연;조은정;정일남
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.138-143
    • /
    • 1995
  • Substituted 3-phenyl-1-silabutanes, 3-chlorophenyl-1-silabutane (1), 3-tolyl-1-silabutane (2), and 3-phenoxyphenyl-1-silabutane (3), were prepared in 68-98% yield by reduction of the corresponding substituted 3-phenyl-1,1-dichloro-1-silabutanes with LiAlH4. The dehydrogenative homopolymerization and copolymerization of the silanes were performed with Cp2MCl2/Red-Al (M=Ti, Hf) catalyst system. The molecular weights of the resulting polymers were in the of range 600 to 1100 (vs polystyrene) with degree of polymerization (DP) of 5 to 8 and polydispersity index (PDI) of 1.6 to 3.8. The monomer silanes underwent the dehydrogenative polymerization with Cp2TiCl2/Red-Al catalyst to produce somewhat higher molecular weight polysilanes compared with Cp2HfCl2/Red-Al catalyst.

A Study on the Electrochemical Characteristics of Al-Si Casting Alloys in NaCl Solution (NaCl 수용액에서 Al-Si계 주조용 합금의 전기화학적 특성 연구)

  • Woo, Sang-Hyun;Son, Young-Jin;Lee, Byung-Woo
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.29-33
    • /
    • 2014
  • The electrochemical characteristics of Al-Si casting alloys (Al-10%Si, Al-9%Si, Al-7%Si) in 3.5% NaCl solution at room temperature was studied using potentiodynamic techniques. The electrochemical values of corrosion potential($E_c$), corrosion current density($I_c$) and corrosion rate(mpy) were examined. The Al-Si alloys had several compounds such as $Mg_2Si$, ${\pi}$-$Al_8Si_6Mg_2Fe$ and $Al_2CuMg$ which could affect corrosion resistance significantly. The potentiodynamic polarization curve exhibited typical active behavior in anodic polarization curve. The major corrosion mechansim for the Al-Si alloys were pitting and grain boundary corrosion. As increasing Si and Cu contents, their corrosion resistance was decreased.

Electrolytic Boronzing on TiAl-based Intermetallic Compounds in Fused Salt of Borax, Potassium Chloride and Lithium Chloride Mixture (Na$_2$B$_4$O$_7$-KCl-LiCl 혼합용융욕에서 TiAl계 금속간 화합물의 전해붕화처리)

  • 이두환;김익범;이주호;김수식
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.6
    • /
    • pp.359-370
    • /
    • 1998
  • TiAl-based intermetallic compounds were electro-bornizel in the mixture of $Na_2B_4O_7$, KCL and LiCl in the termetature rage between 850 and $1000^{\circ}C$for various times (1-5 hours)under the fixed current density of 0.5 A/$cm^2$. The optimized composition of electrolyte in this work was decided to be 76.9 wt% $Na_2B_4O_7$-19.2 wt.%(0.7KCl-0.3LiCl) -3.9 wt.% al. The samples with boronized layer were investigated by SEM, XRD and EDS. The surface micro-hardness of boronized TiAl was also evaluated using Micro Vickers Hardness Tester. The sample, boronized at $900^{\circ}C$ for 4 hours in the above composition of electrolyte under the current density of 0.5 A/$\textrm{cm}^2$, has about 36$\mu\textrm{m}$ think layer on the surface, and its surface micro-hardness was measured to be 1263 Hv. From the results of SEM, XRD and EDS, the layer consisted of $TiB_2$ sublayer and Al-oxide sub layer. Al-depleted layer below the Al-oxide sudlayer was also detected. The activation energy for formation of boronized layer in this study was calculated as 178 Kcal/moleK.

  • PDF

The Effect of the Anti-corrosion by$CHF_3$ Treatment after Plasma Etching of Al Alloy Films (Al 합금막의 식각후 $CHF_3$ 처리에 의한 부식억제 효과)

  • 김창일;권광호;윤용선;백규하;남기수;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.517-521
    • /
    • 1998
  • After etching Al-Cu alloy films using $SiCl_4/Cl_2/He/CHF_3$ plasma, a corrosion phenomenon on the metal surface has been studied with XPS(X-ray pheotoelectron spectroscopy) and SEM (Scanning electron microscopy). In Al-Cu alloy system, the corrosion occurs rapidly on the etched surface by residual chlorine atoms. To prevent the corrosion, $CHF_3$ plasma treatment subsequent to the etch has been carried put. A passivation layer is formed by fluorine-related compounds on the etched Al-Cu surface after $CHF_3$ treatment, and the layer suppresses effectively the corrosion on the surface as the $CHF_3$treatment in the pressure of 300m Torr.

  • PDF

Improved Photoelectric Conversion Efficiency of Perovskite Solar Cells with TiO2:TiCl4 Electron Transfer Layer (TiO2:TiCl4 전자수송층을 도입한 페로브스카이트 태양전지의 광전변환효율 향상)

  • Ahn, Joon-sub;Kang, Seung-gu;Song, Jae-gwan;Kim, Jin-bong;Han, Eun-mi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.85-90
    • /
    • 2017
  • The $TiCl_4$ as a blocking material is adsorbed in the mesoporous $TiO_2$ electron transfer layer(ETL) of the Perovskite solar cell to prevent the direct contact between the FTO electrode and the photoactive layer(AL), and facilitate the movement of the electrons between $TiO_2:TiCl_4$ ETL and Perovskite AL to improve the photoelectric conversion efficiency(PCE). The structure of the perovskite solar cell is FTO/$TiO_2:TiCl_4$/Perovskite($CH_3NH_3PbI_3$)/spiro-OMeTAD/Ag. It was investigated that the dipping time of the $TiO_2$ into $TiCl_4$ aqueous solution affects on the photoelectric characteristics of the device. By the dipping for 30 minutes, the PCE of the perovskite solar cell with the $TiO_2:TiCl_4$ ETL was the highest 10.46%, which is 27% higher than the cell with $TiO_2$ ETL. From SEM, EDS, and XRD characterization on the $TiO_2:TiCl_4$ ETL and the perovskite AL, it was measured that the decrease of the porosity of the $TiO_2$ layer, the detection of the Cl component by the $TiCl_4$ adsorption, the cube-type morphology of perovskite AL, and shift of the $PbI_2$ peak of the perovskite AL. From these results, it was confirmed that the $TiO_2:TiCl_4$ ETL and the perovskite AL were formed.

Influence of inorganic compounds on nanofiltration membrane fouling with Al hydrolysis products (알루미늄 수화물 나노여과 막오염에 대한 공존염의 영향에 관한 연구)

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.479-488
    • /
    • 2011
  • Nanofiltration was performed with polyaluminium chloride solutions at different pH conditions to understand effects of inorganic compounds on aluminum hydrolysis products, i.e., three distinctive groups of aluminum species: polymeric Al at low pH; $Al(OH)_3$ at neutral pH; and ${Al(OH)_4}^-$ at high pH. The PACl solution was prepared to be approximately 4.0mM and adjusted to the designated pH. The influence of inorganic compounds on Al species fouling was investigated with 4.9mM $CaCl_2$ and 3.5mM $MgSO_4$ because $Ca^{2+}$, $Mg^{2+}$, $Cl^-$, ${SO_4}^{2-}$ are the most common inorganics in the drinking water. NF membrane fouling was measured by flux decline rate. The impact of $CaCl_2$ was not significant on the individual Al hydrolysis products fouling. However, the flux decline rate was drastically changed in the presence of $MgSO_4$. The concentration of particulate matters was considerably increased possibly due to interaction between Al species and ${SO_4}^{2-}$ where $MgSO_4$ was introduced. The particulates were accumulated on the membrane and enhanced the hydraulic resistance of the cake layer. In addition, conductivity removal of the membrane was decreased when Al-hydroxide was dominant due to reduction of membrane surface charge. The rejection of $Ca^{2+}$and $Mg^{2+}$ were considerably different, which implys that composition of inorganics paly a role on conductivity removal.

Promoting Effect of AlCl_3 on the Fe-catalyzed Dimerization of Bicyclo[2.2.1]hepta-2,5-diene

  • Nguyen, Mai Dao;Nguyen, Ly Vinh;Lee, Je-Seung;Han, Jeong-Sik;Jeong, Byung-Hun;Cheong, Min-Serk;Kim, Hoon-Sik;Kang, Ho-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1364-1368
    • /
    • 2008
  • The activity of the catalytic system composed of Fe$(acetylacetonate)_3$ (Fe$(acac)_3$), triphenylphosphine, and diethylaluminum chloride for the dimerization of bicyclo[2.2.1]hepta-2,5-diene (2,5-norbornadiene, NBD) to produce hexacyclic endo-endo dimer (hexacyclo[$7.2.1.0^{2,8}.1^{3,7}.1^{5,13}.0^{4,6}$]tetradec-10-ene, Hnn) was significantly enhanced by the presence of $AlCl_3$, especially at the molar ratios of NBD/Fe$(acac)_3$ of 500. XPS analysis of the catalytic systems clearly demonstrates that $AlCl_3$ facilitates the reduction of Fe$(acac)_3$ to form active species, Fe(II) and Fe(0) species. The layer separation was observed when [BMIm]Cl was used along with $AlCl_3$, but catalyst recycle was not very successful.

Hot Corrosion of NiCrAlY/(ZrO2-CeO2-Y2O3) Composite Coatings in Molten Salt (내열복합코팅 NiCrAlY/(ZrO2-CeO2-Y2O3)의 용융염 부식)

  • Lee, Jae-Ho;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.116-116
    • /
    • 2013
  • (Ni-22Cr-10Al-1Y)와 ($ZrO_2-25CeO_2-2.5Y_2O_3$)로 구성되는 금속/세라믹 복합코팅을 대기용사(ASP; air plasma spay)으로 철 기판위에 1:3, 2:2, 3:1의 무게비로 혼합하여 제조하였다. 용사된 코팅은 금속이영지역과 세라믹잉여지역으로 구별되고, 용사중에 NiCrAlY중의 Al이 선택적으로 산화되어 Al2O3가 계면에 존재하였다. 복합코팅은 $NaCl-Na_2SO_4$ 용융염에서 $800{\sim}900^{\circ}C$, 50시간 동안 부식실험을 실시하였다. 부식생성물은 NiO, $Cr_2O_3$, ${\alpha}-Al_2O_3$가 생성되는데, 부식이 진행되면서 용해되었다. 용융염 부식이 진행되는 동안에 Cr, Al이 외방확산하였고, Na, Cl, S는 내부로 확산되었다. 시간 및 온도뿐만 아니라 금속의 양이 증가할수록 코팅의 내식성은 저하되었다.

  • PDF