Browse > Article
http://dx.doi.org/10.6117/kmeps.2017.24.4.085

Improved Photoelectric Conversion Efficiency of Perovskite Solar Cells with TiO2:TiCl4 Electron Transfer Layer  

Ahn, Joon-sub (School of Chemical Engineering, Chonnam National University)
Kang, Seung-gu (School of Chemical Engineering, Chonnam National University)
Song, Jae-gwan (School of Chemical Engineering, Chonnam National University)
Kim, Jin-bong (School of Chemical Engineering, Chonnam National University)
Han, Eun-mi (School of Chemical Engineering, Chonnam National University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.24, no.4, 2017 , pp. 85-90 More about this Journal
Abstract
The $TiCl_4$ as a blocking material is adsorbed in the mesoporous $TiO_2$ electron transfer layer(ETL) of the Perovskite solar cell to prevent the direct contact between the FTO electrode and the photoactive layer(AL), and facilitate the movement of the electrons between $TiO_2:TiCl_4$ ETL and Perovskite AL to improve the photoelectric conversion efficiency(PCE). The structure of the perovskite solar cell is FTO/$TiO_2:TiCl_4$/Perovskite($CH_3NH_3PbI_3$)/spiro-OMeTAD/Ag. It was investigated that the dipping time of the $TiO_2$ into $TiCl_4$ aqueous solution affects on the photoelectric characteristics of the device. By the dipping for 30 minutes, the PCE of the perovskite solar cell with the $TiO_2:TiCl_4$ ETL was the highest 10.46%, which is 27% higher than the cell with $TiO_2$ ETL. From SEM, EDS, and XRD characterization on the $TiO_2:TiCl_4$ ETL and the perovskite AL, it was measured that the decrease of the porosity of the $TiO_2$ layer, the detection of the Cl component by the $TiCl_4$ adsorption, the cube-type morphology of perovskite AL, and shift of the $PbI_2$ peak of the perovskite AL. From these results, it was confirmed that the $TiO_2:TiCl_4$ ETL and the perovskite AL were formed.
Keywords
$TiCl_4$; Dipping time; Electron transfer layer; Perovskite; Photoelectric conversion efficiency;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Ito, S. Tanaka, K. Manabe, and H. Nishino, "Effects of surface blocking layer of $Sb_2S_3$ on nanocrystalline $TiO_2$ for $CH_3NH_3PbI_3$ perovskite solar cells", J. Phys. Chem. C., 118(30), 16995 (2014).   DOI
2 P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, "Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks", Nature, 396(6707), 152 (1998).   DOI
3 M. B. Smith, K. Page, T. Siegrist, P. L. Redmond, E. C. Walter, R. Seshadri, L. E. Brus, and M. L. Steigerwald, "Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale $BaTiO_3$", J. Am. Chem. Soc., 130(22), 6955 (2008).   DOI
4 E. C. LEE, "Review on the Progress in Developing Perovskite Solar Cells(in Korea)", Physics & High Technology, 29(9), 23 (2016).
5 J. M. Shin, and M. K. Song, "Recent Progress and Challenges of Pb-free Perovskite Materials(in Korea)", Polymer Science and Technology, 28(1), 22 (2017).
6 C. Honsberg, and S. Bowden, "PV CDROM EDUCATIONS", (2016) from http://www.pveducation.org/pvcdrom.
7 W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange", Science 348, 1234 (2015).   DOI
8 J. C. Song, "2016 NEW & RENEWABLE ENERGY WHITE PAPER(in Korea)", Korea Energy Agency, 1, 329, (2016).
9 S. H. Lim, "Perovskite solar cell research trend(in Korea)", Bulletin of the Korea Photovoltaic Society, 1(1), 34 (2015).
10 J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell", Nanoscale, 3(10), 4088 (2011).   DOI
11 M. Peplow, "Henry Snaith: Sun Worshipper", Nature, 504 (7480), 364 (2013).
12 J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, Nanoscale, 3, 4088
13 B. Maynard, Q. Long, E. A. Schiff, M. Yang, K. Zhu, R. Kottokkaran, H. Abbas, and V. L. Dalal, "Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells", Appl. Phys. Lett., 108(17), 173505 (2016).   DOI
14 Z. Liu, S. Seo, and E. C. Lee, "Improvement of power conversion efficiencies in $Cr_2O_3$-nanoparticle-embedded polymer solar cells", Appl. Phys. Lett., 103(13), 133306 (2013).   DOI
15 J. Burschka, N. Pellet, S. J. Moon, R. Humphry Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, "Sequential deposition as a route to high-performance perovskite-sensitized solar cells", Nature, 499(7458), 316 (2013).   DOI
16 S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Sniath, "Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells", Nano Lett., 14(10), 5561 (2014).   DOI
17 N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herza, and H. J. Snaith, "Lead-free organic-inorganic tin halide perovskites for photovoltaic applications", Energy Environ. Sci., 7(9), 3061 (2014).   DOI
18 T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, "Overcoming ultraviolet light instability of sensitized $TiO_2$ with meso-superstructured organometal trihalide perovskite solar cells", Nat. Commun., 4, 2885 (2013).   DOI
19 H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. W. Wang, K. Wojciechowski, and W. Zhang, "Anomalous hysteresis in perovskite solar cells", J. Phys. Chem. Lett., 5(9), 1511 (2014).   DOI
20 D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu, X. Wang, C. Li, S. Liu, and R. P. H. Chang, "Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells", Energy Environ. Sci., 9(10), 3071 (2016).   DOI
21 C. D. B, M. G. Christoforo, J. P. M, A. R. Bowring, E. L. Unger, W. H. Nguyen, J. Burschka, N. Pellet, J. Z. Lee, M. Gratzel, R. Noufi, T. Buonassisi, A. Salleoa, and M. D. McGehee, "Semi-transparent perovskite solar cells for tandems with silicon and CIGS", Energy Environ. Sci., 8(3), 956 (2015).   DOI
22 S. K. Jang, S. C. Gong, and H. J. Chang, "The Post Annealing Effect of Organic Thin Film Solar Cells with P3HT: PCBM Active Layer", J. Microelectron. Packag. Soc., 17(2,) 63 (2010).
23 J. H. Lee, T. K. Lee, and C. J. Kim, "Fabrication of $TiO_2$ Electrode Containing Scattering Particles in Dye-Sensitized Solar Cells", J. Microelectron. Packag. Soc., 18(2), 57 (2011).
24 H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A.Marchioro, S. J. Moon, R. Humphry Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%", Sci. Rep., 2, 591 (2012).   DOI
25 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasake, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells", J. Am. Chem. Soc., 131(17), 6050 (2009).   DOI
26 M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites", Science, 338(6107), 643 (2012).   DOI